LEADER 00820nam0-22002771i-450- 001 990005756740403321 005 19990530 035 $a000575674 035 $aFED01000575674 035 $a(Aleph)000575674FED01 035 $a000575674 100 $a19990530d1931----km-y0itay50------ba 101 0 $ager 105 $ay-------001yy 200 1 $aAltisländische Namenwahl$fvon Max Keil 210 $aLeipzig$cMayer & Mnller$d1931 215 $aXI, 136 p.$d24 cm 225 1 $aPalaestra. Untersuchungen und texte aus der deutschen und englischen Philologie, 176 700 1$aKeil,$bMax$0219955 801 0$aIT$bUNINA$gRICA$2UNIMARC 901 $aBK 912 $a990005756740403321 952 $aGLOTT. B VI e 54$bIST.GLOTT. S.I.$fFLFBC 959 $aFLFBC 996 $aAltisländische Namenwahl$9571631 997 $aUNINA LEADER 01671nam 2200409 450 001 996279749503316 005 20230803034043.0 035 $a(CKB)3460000000125586 035 $a(WaSeSS)IndRDA00119773 035 $a(EXLCZ)993460000000125586 100 $a20200309d2013 uy 0 101 0 $aeng 135 $aur||||||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$a2013 Proceedings of the International Symposium on Antennas & Propagation $e23-25 October 2013, Nanjing, China /$fsponsored and organized by Southeast University ; co-sponsored by University of Electronic Sci. & Tech. of China, Technically co-sponsored by CIE Antenna Society; the IEICE Communications Society; IEEE Antennas and Propagation Society 210 1$aPiscataway, New Jersey :$cInstitute of Electrical and Electronics Engineers,$d2013. 215 $a1 online resource (700 pages) 311 $a1-4799-0921-1 311 $a7-5641-4279-0 606 $aRadio wave propagation$vCongresses 606 $aAntennas (Electronics)$vCongresses 615 0$aRadio wave propagation 615 0$aAntennas (Electronics) 676 $a551.527 712 02$aSoutheast University, 712 02$aUniversity of Electronic Sci. & Tech. of China, 712 02$aDenshi Jo?ho? Tsu?shin Gakkai (Japan).$bTsu?shin Sosaieti, 712 02$aCIE Antenna Society, 712 02$aIEEE Antennas and Propagation Society, 801 0$bWaSeSS 801 1$bWaSeSS 906 $aPROCEEDING 912 $a996279749503316 996 $a2013 Proceedings of the International Symposium on Antennas & Propagation$92525578 997 $aUNISA LEADER 05580nam 2200685Ia 450 001 9911019555103321 005 20200520144314.0 010 $a1-283-40526-1 010 $a9786613405265 010 $a1-119-99104-8 010 $a1-119-99103-X 035 $a(CKB)3460000000000097 035 $a(EBL)697518 035 $a(SSID)ssj0000482460 035 $a(PQKBManifestationID)11306138 035 $a(PQKBTitleCode)TC0000482460 035 $a(PQKBWorkID)10526706 035 $a(PQKB)11470967 035 $a(MiAaPQ)EBC697518 035 $a(OCoLC)711782150 035 $a(EXLCZ)993460000000000097 100 $a20110113d2011 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 00$aZinc oxide materials for electronic and optoelectronic device applications /$fedited by Cole W. Litton, Donald C. Reynolds, Thomas C. Collins 210 $aChichester, West Sussex $cWiley$d2011 215 $a1 online resource (387 p.) 225 1 $aWiley series in materials for electronic and optoelectronic applications 300 $aDescription based upon print version of record. 311 $a0-470-51971-1 320 $aIncludes bibliographical references and index. 327 $aZinc Oxide Materials for Electronic and Optoelectronic Device Applications; Contents; Series Preface; Preface; List of Contributors; 1 Fundamental Properties of ZnO; 1.1 Introduction; 1.1.1 Overview; 1.1.2 Organization of Chapter; 1.2 Band Structure; 1.2.1 Valence and Conduction Bands; 1.3 Optical Properties; 1.3.1 Free and Bound Excitons; 1.3.2 Effects of External Magnetic Field on ZnO Excitons; 1.3.3 Strain Field; 1.3.4 Spatial Resonance Dispersion; 1.4 Electrical Properties; 1.4.1 Intrinsic Electronic Transport Properties; 1.4.2 n-type Doping and Donor Levels 327 $a1.4.3 p-type Doping and Dopability1.4.4 Schottky Barriers and Ohmic Contacts; 1.5 Band Gap Engineering; 1.5.1 Homovalent Heterostructures; 1.5.2 Heterovalent Heterostructures; 1.6 Spintronics; 1.7 Summary; References; 2 Optical Properties of ZnO; 2.1 Introduction; 2.2 Free Excitons; 2.3 Strain Splitting of the ?5 and ?6 Free Excitons in ZnO; 2.4 Photoluminescence from the Two Polar Faces of ZnO; 2.5 Bound-Exciton Complexes in ZnO; 2.6 Similarities in the Photoluminescence Mechanisms of ZnO and GaN 327 $a2.7 The Combined Effects of Screening and Band Gap Renormalization on the Energy of Optical Transitions in ZnO and GaN2.8 Closely Spaced Donor-Acceptor Pairs in ZnO; 2.9 Summary; References; 3 Electrical Transport Properties in Zinc Oxide; 3.1 Introduction; 3.2 Hall-Effect Analysis; 3.2.1 Single-Band Conduction; 3.2.2 Two-Band Mixed Conduction; 3.2.3 Conducting Surface Layers; 3.3 Donor States and n-type Doping; 3.3.1 Native Point Defects - Donors; 3.3.2 Substitutional Donors; 3.4 Hydrogen; 3.5 Acceptor States and p-type Doping; 3.5.1 Native Point Defects - Acceptors 327 $a3.5.2 Substitutional Acceptors3.6 Photoconductivity; 3.7 Summary; References; 4 ZnO Surface Properties and Schottky Contacts; 4.1 Historical Background of Schottky Contacts on ZnO; 4.1.1 ZnO Surface Effects; 4.1.2 Early Schottky Barrier Studies; 4.2 Recent Schottky Barrier Studies; 4.2.1 Surface Cleaning in Vacuum; 4.2.2 Surface Cleaning Effects on Impurities and Defects; 4.3 The Influence of Surface Preparation on Schottky Barriers; 4.4 The Influence of Defects on Schottky Barriers; 4.5 The Influence of ZnO Polarity on Schottky Barriers; 4.6 The Influence of Chemistry 327 $a4.7 Charge Transport and Extended Metal-ZnO Schottky Barriers4.8 Conclusion; Acknowledgements; References; 5 Native Point Defects and Doping in ZnO; 5.1 Introduction; 5.2 Theoretical Framework; 5.3 Native Point Defects; 5.3.1 Oxygen Vacancies; 5.3.2 Zinc Interstitials; 5.3.3 Zinc Antisites; 5.3.4 Zinc Vacancies; 5.3.5 Defect Migration; 5.4 Donor Impurities; 5.4.1 Aluminum, Gallium and Indium; 5.4.2 Fluorine; 5.4.3 Hydrogen; 5.5 Acceptor Impurities; 5.5.1 Lithium; 5.5.2 Copper; 5.5.3 Nitrogen; 5.5.4 Phosphorous, Arsenic and Antimony; 5.5.5 Co-Doping; 5.6 Isoelectronic Impurities 327 $aAcknowledgements 330 $aZinc Oxide (ZnO) powder has been widely used as a white paint pigment and industrial processing chemical for nearly 150 years. However, following a rediscovery of ZnO and its potential applications in the 1950s, science and industry alike began to realize that ZnO had many interesting novel properties that were worthy of further investigation. ZnO is a leading candidate for the next generation of electronics, and its biocompatibility makes it viable for medical devices. This book covers recent advances including crystal growth, processing and doping and also discusses the problems and issues 410 0$aWiley series in materials for electronic and optoelectronic applications. 606 $aZinc oxide 606 $aElectronic apparatus and appliances$xMaterials 606 $aOptoelectronic devices$xMaterials 615 0$aZinc oxide. 615 0$aElectronic apparatus and appliances$xMaterials. 615 0$aOptoelectronic devices$xMaterials. 676 $a669/.52 686 $aTEC021000$2bisacsh 701 $aLitton$b Cole W$01842625 701 $aReynolds$b Donald C$0605947 701 $aCollins$b Thomas C.$f1936-$0605948 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9911019555103321 996 $aZinc oxide materials for electronic and optoelectronic device applications$94422803 997 $aUNINA