LEADER 02385nam 2200553 a 450 001 9911019543603321 005 20200520144314.0 010 $a1-283-17360-3 010 $a9786613173607 010 $a3-527-63308-1 010 $a3-527-63307-3 035 $a(CKB)3400000000000397 035 $a(EBL)700903 035 $a(OCoLC)773564608 035 $a(SSID)ssj0000476963 035 $a(PQKBManifestationID)12159874 035 $a(PQKBTitleCode)TC0000476963 035 $a(PQKBWorkID)10480661 035 $a(PQKB)10653844 035 $a(MiAaPQ)EBC700903 035 $a(EXLCZ)993400000000000397 100 $a20110809d2011 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 00$aCharge and exciton transport through molecular wires /$fedited by Laurens D.A. Siebbeles and Ferdinand C. Grozema 210 $aWeinheim, Germany $cWiley-VCH$d2011 215 $a1 online resource (335 p.) 300 $aDescription based upon print version of record. 311 08$a3-527-32501-8 320 $aIncludes bibliographical references and index. 327 $apt. 1. Molecules between electrodes -- pt. 2. Donor-bridge-acceptor systems -- pt. 3. Charge transport through wires in solution -- pt. 4. Exciton transport through conjugated molecular wires. 330 $aAs functional elements in opto-electronic devices approach the singlemolecule limit, conducting organic molecular wires are the appropriateinterconnects that enable transport of charges and charge-like particles such as excitons within the device. Reproducible syntheses and athorough understanding of the underlying principles are therefore indispensable for applications like even smaller transistors, molecularmachines and light-harvesting materials. Bringing together experiment and theory to enable applications in real-life devices, this handbookand ready reference provides ess 606 $aExciton theory 606 $aElectronics 615 0$aExciton theory. 615 0$aElectronics. 676 $a621.381 701 $aSiebbeles$b Laurens D. A$01842510 701 $aGrozema$b Ferdinand C$01842511 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9911019543603321 996 $aCharge and exciton transport through molecular wires$94422663 997 $aUNINA