LEADER 11158nam 22005773 450 001 9911019506703321 005 20240409080230.0 010 $a9781394284030 010 $a1394284039 010 $a9781394284009 010 $a1394284004 035 $a(MiAaPQ)EBC31254151 035 $a(Au-PeEL)EBL31254151 035 $a(CKB)31376294400041 035 $a(Exl-AI)31254151 035 $a(Perlego)4384958 035 $a(OCoLC)1429233957 035 $a(EXLCZ)9931376294400041 100 $a20240409d2024 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 14$aThe Challenges of MRI $eTechniques and Quantitative Methods for Health 205 $a1st ed. 210 1$aNewark :$cJohn Wiley & Sons, Incorporated,$d2024. 210 4$d©2024. 215 $a1 online resource (398 pages) 311 08$a9781789451139 311 08$a1789451132 327 $aCover -- Title Page -- Copyright Page -- Contents -- Introduction -- Chapter 1. MRI Principles, Hardware Components and Quantification -- 1.1. Introduction -- 1.2. Macroscopic magnetization and static magnetic field B0 -- 1.2.1. Nuclear magnetization -- 1.2.2. Magnet -- 1.2.3. Roles and orders of magnitude -- 1.2.4. Technical approaches -- 1.2.5. Novel technologies -- 1.3. Description of the magnetization evolution -- 1.4. Excitation: perturbing the magnetization -- 1.4.1. Principle -- 1.4.2. Transmit coil -- 1.4.3. Radiofrequency signal reception -- 1.5. Spatial localization in MRI -- 1.5.1. Principle -- 1.5.2. Magnetic field gradients -- 1.6. Signal-to-noise ratio notion in MRI -- 1.7. Useful signal and information -- 1.7.1. A "complex" signal in a mathematical and bio-physical sense -- 1.7.2. From qualitative to quantitative -- 1.8. Conclusion -- 1.9. Acknowledgments -- 1.10. References -- Chapter 2. Radiofrequency Coils: Theoretical Principles and Practical Guidelines -- 2.1. Coil as an electrical resonant circuit -- 2.1.1. Basic concepts -- 2.1.2. Coil tuning and matching -- 2.2. Coil as a source of a magnetic RF field -- 2.2.1. Polarization and 1 B+ and 1 B- fields -- 2.3. Transmit coil -- 2.4. Receive coil -- 2.4.1. Sensitivity factor -- 2.4.2. Noise regimes -- 2.5. Decoupling -- 2.6. RF coil and safety -- 2.6.1. Specific absorption rate and temperature -- 2.6.2. Transmission and safety -- 2.7. Advanced topics and coil challenges -- 2.8. Conclusion -- 2.9. References -- Chapter 3. Fast Imaging and Acceleration Techniques -- 3.1. Introduction -- 3.2. Definition of fast imaging -- 3.3. Fast accelerated sequences -- 3.3.1. Sequence optimization -- 3.3.2. Turbo spin echo and echo-planar imaging -- 3.3.3. Non-Cartesian methods -- 3.4. Acceleration methods -- 3.4.1. Partial Fourier -- 3.4.2. Parallel imaging. 327 $a3.4.3. Simultaneous multislice imaging -- 3.4.4. Iterative reconstruction -- 3.5. Applications -- 3.6. References -- Chapter 4. The Basics of Diffusion and Intravoxel Incoherent Motion MRI -- 4.1. Introduction -- 4.2. The history and physics of diffusion -- 4.3. Diffusion and NMR -- 4.3.1. First NMR measurements of diffusion -- 4.3.2. Measurements of diffusion with pulsed gradients: the Stejskal and Tanner method -- 4.4. Water diffusion in biological tissues -- 4.5. Diffusion magnetic resonance imaging -- 4.5.1. Diffusion MRI pulse sequences -- 4.5.2. Applications of DW-MRI -- 4.6. IntraVoxel Incoherent Motion MRI -- 4.7. Conclusion -- 4.8. References -- Chapter 5. Functional MRI -- 5.1. BOLD-contrast functional imaging and brain connectivity -- 5.1.1. Introduction -- 5.1.2. BOLD-contrast functional MRI principles -- 5.1.3. fMRI activation paradigms -- 5.1.4. Resting fMRI and functional cerebral connectivity mapping -- 5.2. Diffusion MRI and brain function -- 5.2.1. Introduction -- 5.2.2. IVIM fMRI -- 5.2.3. Diffusion functional MRI -- 5.2.4. Toward functional tractography: a global diffusion framework within the brain connectome -- 5.3. Conclusion -- 5.4. References -- Chapter 6. Vascular Imaging: Flow and Perfusion -- 6.1. Introduction -- 6.2. Contrast agents -- 6.2.1. Biological behavior -- 6.2.2. Diamagnetism, paramagnetism and superparamagnetism -- 6.2.3. Relaxivity effect -- 6.2.4. Susceptibility effect -- 6.3. Angiography -- 6.3.1. White-blood imaging -- 6.3.2. Phase contrast imaging -- 6.3.3. Black-blood imaging -- 6.3.4. Other techniques -- 6.3.5. Dynamic angiography -- 6.4. Perfusion imaging -- 6.4.1. Dynamic susceptibility contrast -- 6.4.2. Dynamic contrast-enhanced -- 6.4.3. Arterial spin labeling (ASL) -- 6.4.4. Experimental approaches -- 6.5. Considerations for imaging in humans and small animals -- 6.5.1. Angiography in rodents. 327 $a6.5.2. Perfusion MRI in rodents -- 6.6. References -- Chapter 7. Quantitative Biomechanical Imaging via Magnetic Resonance Elastography -- 7.1. Fundamentals of magnetic resonance elastography -- 7.1.1. Introduction -- 7.1.2. MRE signal encoding -- 7.1.3. MRE data reconstruction -- 7.2. MRE sequences -- 7.2.1. Fractional encoding -- 7.2.2. Multidirectional encoding -- 7.2.3. Diffusion MRE -- 7.2.4. Optimal control MRE -- 7.3. Main targeted organs and applications -- 7.3.1. Liver MRE -- 7.3.2. Brain MRE -- 7.3.3. MRE and other organs -- 7.3.4. Other applications -- 7.4. Conclusion -- 7.5. Acknowledgments -- 7.6. References -- Chapter 8. Imaging of Dipolar Interactions in Biological Tissues: ihMT and UTE -- 8.1. Introduction -- 8.2. Origins of ultrashort T2 -- 8.2.1. Dipolar coupling in NMR -- 8.2.2. Dipolar resonance line broadening -- 8.2.3. Motional averaging -- 8.3. Imaging of the inhomogeneous magnetization transfer -- 8.3.1. Dipolar order and radiofrequency saturation -- 8.3.2. Dipolar order and inhomogeneous magnetization transfer -- 8.3.3. Specificity of the ihMT signal and relaxation of the dipolar order -- 8.3.4. Specificity of the ihMT signal to myelin -- 8.3.5. Research outlook -- 8.4. Ultrashort echo time imaging -- 8.4.1. Definition of T2 ranges -- 8.4.2. Distribution of short T2 values in cerebral tissue -- 8.4.3. What are the technical challenges for detecting signals with ultrashort T2? -- 8.4.4. What are the challenges for the characterization of signals with ultrashort T2 in the cerebral tissue? -- 8.4.5. Applications: myelin imaging -- 8.5. Conclusion -- 8.6. References -- Chapter 9. In Vivo MR Spectroscopy and Metabolic Imaging -- 9.1. Introduction -- 9.2. In vivo MR spectroscopy -- 9.2.1. Free induction decay signal -- 9.2.2. Chemical shift and dipolar coupling -- 9.2.3. Metabolites investigated in MRS. 327 $a9.2.4. Principle of signal localization -- 9.2.5. Signal editing, suppression and inversion -- 9.2.6. Experimental considerations in MRS -- 9.3. Processing and quantification of MRS signals -- 9.3.1. Good practices for preprocessing MRS/CSI data -- 9.3.2. Quantification method -- 9.4. Chemical exchange saturation transfer imaging -- 9.4.1. General principle -- 9.4.2. Conditions for CEST effect -- 9.4.3. Saturation transfer -- 9.4.4. Characterization of the magnetization transfer -- 9.5. Non-proton nuclei MR spectroscopy or imaging -- 9.5.1. Nuclei of interest in metabolic MRS/MRI -- 9.5.2. Applications overview -- 9.6. Conclusion -- 9.7. References -- Chapter 10. Physical-model-constrained MRI: Fast Multiparametric Quantification -- 10.1. Introduction -- 10.2. Multiparametric MRI based on chemical-shift-sensitive acquisitions -- 10.2.1. Signal's origin and chemical-shift-encoded acquisitions -- 10.2.2. Physical models and optimization methods for the quantification -- 10.2.3. Clinical and preclinical applications -- 10.3. Multiparametric MRI using steady-state acquisitions in repeated fast sequences -- 10.3.1. Steady state in a stationary sequence without transverse effects -- 10.3.2. Transverse effects considerations for describing steady states -- 10.3.3. Uses in multiparametric quantitative imaging -- 10.3.4. Clinical and preclinical applications -- 10.3.5. Conclusion -- 10.4. MRI fingerprinting -- 10.4.1. Concept -- 10.4.2. Different types of measurements -- 10.4.3. Technical developments -- 10.4.4. Applications and perspectives -- 10.5. Conclusion -- 10.6. References -- Chapter 11. Interventional MRI -- 11.1. Introduction to interventional MRI -- 11.1.1. Intervention planning -- 11.1.2. Pre-operatory imaging -- 11.1.3. Post-operative follow-up imaging -- 11.2. Technical considerations in interventional MRI. 327 $a11.2.1. Choice of the MRI acquisition sequence -- 11.2.2. Image reconstruction -- 11.2.3. Image analysis and display -- 11.2.4. Motion management -- 11.3. Interventional MRI hardware -- 11.3.1. Intracorporeal medical devices -- 11.3.2. Extracorporeal therapeutic medical devices -- 11.4. MR-Linac -- 11.5. MRI thermometry for guided thermal therapies -- 11.5.1. Principle of MRI thermometry -- 11.5.2. Practical implementation, advantages and limitations of MRI thermometry -- 11.6. High-intensity focused ultrasound -- 11.6.1. General principles -- 11.6.2. Application domains -- 11.7. Perspectives of interventional MRI -- 11.8. References -- Chapter 12. Ultra-high Field Imaging -- 12.1. Historical overview -- 12.2. Quest toward higher field MR systems - why? -- 12.2.1. Advantages and benefits of ultra-high field systems -- 12.2.2. Disadvantages and challenges -- 12.3. Quest toward higher fields - how? -- 12.3.1. Technical constraints -- 12.3.2. Physiological constraints, contraindications and safety -- 12.4. Main applications and novel opportunities -- 12.4.1. Cerebrovascular diseases -- 12.4.2. Brain tumors -- 12.4.3. Focal epilepsy -- 12.4.4. Multiple sclerosis -- 12.4.5. Sodium imaging -- 12.4.6. Creating new normalization spaces (templates) -- 12.4.7. Imaging of the cartilage and muscle injuries -- 12.5. Parallel transmission: technical solutions and imaging -- 12.6. Conclusion -- 12.7. Acknowledgments -- 12.8. References -- List of Authors -- Index -- EULA. 330 $aThis book, 'The Challenges of MRI Techniques and Quantitative Methods for Health', coordinated by Hélène Ratiney and Olivier Beuf, explores the fundamental principles and advanced techniques used in Magnetic Resonance Imaging (MRI). It covers topics such as the principles of MRI, hardware components, magnetization, excitation, signal-to-noise ratio, and spatial localization. The book also delves into the theoretical principles and practical guidelines of coils, fast imaging, acceleration techniques, and diffusion MRI. It serves as a comprehensive resource for professionals and researchers in the field of medical imaging, providing insights into the latest advancements and challenges in MRI technology.$7Generated by AI. 606 $aMagnetic resonance imaging$7Generated by AI 606 $aDiagnostic imaging$7Generated by AI 615 0$aMagnetic resonance imaging 615 0$aDiagnostic imaging 676 $a616.07548 700 $aRatiney$b Helene$01751009 701 $aBeuf$b Olivier$01751010 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9911019506703321 996 $aThe Challenges of MRI$94423018 997 $aUNINA LEADER 04948nam 22006255 450 001 9910254997403321 005 20200705033040.0 010 $a3-319-31700-8 024 7 $a10.1007/978-3-319-31700-7 035 $a(CKB)3710000000732172 035 $a(DE-He213)978-3-319-31700-7 035 $a(MiAaPQ)EBC4557252 035 $a(PPN)194375935 035 $a(EXLCZ)993710000000732172 100 $a20160614d2016 u| 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aRobust Multimodal Cognitive Load Measurement /$fby Fang Chen, Jianlong Zhou, Yang Wang, Kun Yu, Syed Z. Arshad, Ahmad Khawaji, Dan Conway 205 $a1st ed. 2016. 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d2016. 215 $a1 online resource (XIV, 254 p. 131 illus., 65 illus. in color.) 225 1 $aHuman?Computer Interaction Series,$x1571-5035 311 $a3-319-31698-2 320 $aIncludes bibliographical references at the end of each chapters. 327 $aPreface -- Part I: Preliminaries -- Introduction -- The State-of-The-Art -- Theoretical Aspects of Multimodal Cognitive Load Measures -- Part II: Physiological Measurement -- Eye Based Measures. Galvanic Skin Response Based Measures -- Part III: Behavioural Measurement -- Linguistic Feature Based Measures -- Speech Signal Based Measures -- Pen Input Based Measures -- Mouse Based Measures -- Part IV: Multimodal Measures and Affecting Factors -- Multimodal Measures and Data Fusion -- Emotion and Cognitive Load -- Stress and Cognitive Load -- Trust and Cognitive Load -- Part V: Making Cognitive Load Measurement Accessible -- Dynamic Cognitive Load Adjustments in A Feedback Loop -- Real-Time Cognitive Load Measurement: Data Streaming Approach -- Applications of Cognitive Load Measurement -- Part VI: Conclusions -- Cognitive Load Measurement in Perspectives. 330 $aThis book explores robust multimodal cognitive load measurement with physiological and behavioural modalities, which involve the eye, Galvanic Skin Response, speech, language, pen input, mouse movement and multimodality fusions. Factors including stress, trust, and environmental factors such as illumination are discussed regarding their implications for cognitive load measurement. Furthermore, dynamic workload adjustment and real-time cognitive load measurement with data streaming are presented in order to make cognitive load measurement accessible by more widespread applications and users. Finally, application examples are reviewed demonstrating the feasibility of multimodal cognitive load measurement in practical applications. This is the first book of its kind to systematically introduce various computational methods for automatic and real-time cognitive load measurement and by doing so moves the practical application of cognitive load measurement from the domain of the computer scientist and psychologist to more general end-users, ready for widespread implementation. Robust Multimodal Cognitive Load Measurement is intended for researchers and practitioners involved with cognitive load studies and communities within the computer, cognitive, and social sciences. The book will especially benefit researchers in areas like behaviour analysis, social analytics, human-computer interaction (HCI), intelligent information processing, and decision support systems. 410 0$aHuman?Computer Interaction Series,$x1571-5035 606 $aUser interfaces (Computer systems) 606 $aPsychobiology 606 $aBiometry 606 $aUser Interfaces and Human Computer Interaction$3https://scigraph.springernature.com/ontologies/product-market-codes/I18067 606 $aBiological Psychology$3https://scigraph.springernature.com/ontologies/product-market-codes/Y20020 606 $aBiometrics$3https://scigraph.springernature.com/ontologies/product-market-codes/I22040 615 0$aUser interfaces (Computer systems) 615 0$aPsychobiology. 615 0$aBiometry. 615 14$aUser Interfaces and Human Computer Interaction. 615 24$aBiological Psychology. 615 24$aBiometrics. 676 $a005.437 676 $a4.019 700 $aChen$b Fang$4aut$4http://id.loc.gov/vocabulary/relators/aut$09032 702 $aZhou$b Jianlong$4aut$4http://id.loc.gov/vocabulary/relators/aut 702 $aWang$b Yang$4aut$4http://id.loc.gov/vocabulary/relators/aut 702 $aYu$b Kun$4aut$4http://id.loc.gov/vocabulary/relators/aut 702 $aArshad$b Syed Z$4aut$4http://id.loc.gov/vocabulary/relators/aut 702 $aKhawaji$b Ahmad$4aut$4http://id.loc.gov/vocabulary/relators/aut 702 $aConway$b Dan$4aut$4http://id.loc.gov/vocabulary/relators/aut 906 $aBOOK 912 $a9910254997403321 996 $aRobust Multimodal Cognitive Load Measurement$91953980 997 $aUNINA