LEADER 01279nam0 22002893i 450 001 VAN0090124 005 20120621120459.453 010 $a04-7111-213-5 100 $a20120621d1996 |0itac50 ba 101 $aeng 102 $aUS 105 $a|||| ||||| 200 1 $aInvestment valuation$etools and techniques for determining the value of any asset$fAswath Damodaran 205 $aNew York [etc.] : Wiley & Sons$b1996 210 $aXV$d519 p. ; 26 cm 215 $aL'oggetto digitale è riferito ad una edizione successiva del testo. 410 1$1001VAN0071131$12001 $aWiley frontiers in finance$1210 $aNew York$cWiley. 620 $aUS$dNew York$3VANL000011 700 1$aDamodaran$bAswath$3VANV073284$0117726 712 $aWiley $3VANV108092$4650 801 $aIT$bSOL$c20230915$gRICA 856 4 $uhttp://books.google.it/books?id=1zc4p68IbYMC&printsec=frontcover&hl=it$zhttp://books.google.it/books?id=1zc4p68IbYMC&printsec=frontcover&hl=it 899 $aBIBLIOTECA DEL DIPARTIMENTO DI ECONOMIA$1IT-CE0106$2VAN03 912 $aVAN0090124 950 $aBIBLIOTECA DEL DIPARTIMENTO DI ECONOMIA$d03PREST IIBh41 $e03 30196 20120621 996 $aInvestment valuation$9670520 997 $aUNICAMPANIA LEADER 01242nam0 22002771i 450 001 UON00415528 005 20231205104758.989 100 $a20121227d1943 |0itac50 ba 101 $ager 102 $aDE 105 $a|||| 1|||| 200 1 $aSir Thomas Browne (1605-1682) als Stilkünstler$aein beitrag zur deutung der englischen barockliteratur$fDietrich Bischoff 210 $aHeidelberg$cCarl Winters$d1943 215 $a88 p.$d22 cm. 410 1$1001UON00287275$12001 $aAnglistische Forschungen$1210 $aHeidelberg$cC. Winter Universitätsverlag$v88 606 $aBROWNE THOMAS$3UONC066988$2FI 620 $aDE$dHeidelberg$3UONL000174 676 $a830.5$cLetteratura tedesca. 1625-1750 (periodo barocco).$v21 700 1$aBISCHOFF$bDietrich$3UONV212185$0709621 801 $aIT$bSOL$c20240220$gRICA 899 $aSIBA - SISTEMA BIBLIOTECARIO DI ATENEO$2UONSI 912 $aUON00415528 950 $aSIBA - SISTEMA BIBLIOTECARIO DI ATENEO$dSI Angl III B 0008 $eSI MR 37254 5 0008 $sBuono 996 $aEin beitrag zur deutung der englischen barockliteratur$91338977 996 $aSir Thomas Browne (1605-1682) als Stilkünstler$91338976 997 $aUNIOR LEADER 10410nam 22006013 450 001 9911019479003321 005 20240220080208.0 010 $a9781119847656 010 $a1119847656 010 $a9781119847649 010 $a1119847648 035 $a(MiAaPQ)EBC31167448 035 $a(Au-PeEL)EBL31167448 035 $a(OCoLC)1423038685 035 $a(OCoLC-P)1423038685 035 $a(CaSebORM)9781119847465 035 $a(CKB)30404827700041 035 $a(OCoLC)1422743186 035 $a(EXLCZ)9930404827700041 100 $a20240220d2024 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aArtificial Intelligence for Autonomous Vehicles $eThe Future of Driverless Technology 205 $a1st ed. 210 1$aNewark :$cJohn Wiley & Sons, Incorporated,$d2024. 210 4$d©2024. 215 $a1 online resource (268 pages) 225 1 $aAdvances in Data Engineering and Machine Learning Series 311 08$a9781119847465 311 08$a111984746X 327 $aCover -- Title Page -- Copyright Page -- Contents -- Preface -- Chapter 1 Artificial Intelligence in Autonomous Vehicles-A Survey of Trends and Challenges -- 1.1 Introduction -- 1.2 Research Trends of AI for AV -- 1.3 AV-Pipeline Activities -- 1.3.1 Vehicle Detection -- 1.3.2 Rear-End Collision Avoidance -- 1.3.3 Traffic Signal and Sign Recognition -- 1.3.4 Lane Detection and Tracking -- 1.3.5 Pedestrian Detection -- 1.4 Datasets in the Literature of Autonomous Vehicles -- 1.4.1 Stereo and 3D Reconstruction -- 1.4.2 Optical Flow -- 1.4.3 Recognition and Segmentation of Objects -- 1.4.4 Tracking Datasets -- 1.4.5 Datasets for Aerial Images -- 1.4.6 Sensor Synchronization Datasets -- 1.5 Current Industry Standards in AV -- 1.6 Challenges and Opportunities in AV -- 1.6.1 Cost -- 1.6.2 Security Concerns -- 1.6.3 Standards and Regulations -- 1.7 Conclusion -- References -- Chapter 2 Age of Computational AI for Autonomous Vehicles -- 2.1 Introduction -- 2.1.1 Autonomous Vehicles -- 2.1.2 AI in Autonomous Vehicles -- 2.1.2.1 Functioning of AI in Autonomous Vehicles -- 2.2 Autonomy -- 2.2.1 Autonomy Phases -- 2.2.2 Learning Methodologies for Incessant Learning in Real-Life Autonomy Systems -- 2.2.2.1 Supervised Learning -- 2.2.2.2 Unsupervised Learning -- 2.2.2.3 Reinforcement Learning -- 2.2.3 Advancements in Intelligent Vehicles -- 2.2.3.1 Integration of Technologies -- 2.2.3.2 Earlier Application of AI in Automated Driving -- 2.3 Classification of Technological Advances in Vehicle Technology -- 2.4 Vehicle Architecture Adaptation -- 2.5 Future Directions of Autonomous Driving -- 2.6 Conclusion -- References -- Chapter 3 State of the Art of Artificial Intelligence Approaches Toward Driverless Technology -- 3.1 Introduction -- 3.2 Role of AI in Driverless Cars -- 3.2.1 What is Artificial Intelligence? -- 3.2.2 What are Autonomous Vehicles?. 327 $a3.2.3 History of Artificial Intelligence in Driverless Cars -- 3.2.4 Advancements Over the Years -- 3.2.5 Driverless Cars and the Technology they are Built Upon -- 3.2.6 Advancement of Algorithms -- 3.2.7 Case Study on Tesla -- 3.3 Conclusion -- References -- Chapter 4 A Survey on Architecture of Autonomous Vehicles -- 4.1 Introduction -- 4.1.1 What is Artificial Intelligence? -- 4.1.2 What are Autonomous Vehicles? -- 4.2 A Study on Technologies Used in AV -- 4.2.1 Artificial Vision -- 4.2.2 Varying Light and Visibility Conditions -- 4.2.3 Scenes with a High Dynamic Range (HDR) -- 4.2.3.1 3 Dimensional Technology -- 4.2.3.2 Emerging Vision Technologies -- 4.2.4 Radar -- 4.2.4.1 Emerging Radar Technologies -- 4.2.5 LiDAR -- 4.2.5.1 Emerging LiDAR Technologies -- 4.3 Analysis on the Architecture of Autonomous Vehicles -- 4.3.1 Hardware Architecture -- 4.3.2 Software Architecture -- 4.4 Analysis on One of the Proposed Architectures -- 4.5 Functional Architecture of Autonomous Vehicles -- 4.6 Challenges in Building the Architecture of Autonomous Vehicles -- 4.6.1 Road Condition -- 4.6.2 Weather Condition -- 4.6.3 Traffic Condition -- 4.6.4 Accident Responsibility -- 4.6.5 Radar Interference -- 4.7 Advantages of Autonomous Vehicles -- 4.8 Use Cases for Autonomous Vehicle Technology -- 4.8.1 Five Use Cases -- 4.9 Future Aspects of Autonomous Vehicles -- 4.9.1 Levels of Vehicle Autonomy -- 4.9.2 Safer Mobility Technology -- 4.9.3 Industry Collaboration and Policy Matters -- 4.10 Summary -- References -- Chapter 5 Autonomous Car Driver Assistance System -- 5.1 Introduction -- 5.1.1 Traffic Video Surveillance -- 5.1.2 Need for the Research Work -- 5.2 Related Work -- 5.3 Methodology -- 5.3.1 Intelligent Driver Assistance System -- 5.3.2 Traffic Police Hand Gesture Region Identification -- 5.3.3 Vehicle Brake and Indicator Light Identification. 327 $a5.4 Results and Analysis -- 5.5 Conclusion -- References -- Chapter 6 AI-Powered Drones for Healthcare Applications -- 6.1 Introduction -- 6.1.1 Role of Artificial Intelligence in Drone Technology -- 6.1.2 Unmanned Aerial Vehicle-Drone Technology -- 6.2 Kinds of Drones Used by Medical Professionals -- 6.2.1 Multirotor -- 6.2.2 Only One Rotor -- 6.2.3 Permanent-Wing Drones -- 6.2.4 Drones for Passenger Ambulances -- 6.3 Medical and Public Health Surveillance -- 6.3.1 Telemedicine -- 6.3.2 Drones as Medical Transportation Devices -- 6.3.3 Advanced System for First Aid for the Elderly People -- 6.4 Potential Benefits of Drones in the Healthcare Industry -- 6.4.1 Top Medical Drone Delivery Services -- 6.4.2 Limitations of Drones in Healthcare -- 6.4.3 The Influence of COVID on Drones -- 6.4.4 Limitations of Drone Technology in the Healthcare Industry -- 6.4.4.1 Privacy -- 6.4.4.2 Legal Concerns -- 6.4.4.3 Rapid Transit-One of the Biggest Drawbacks of Drones is Time -- 6.4.4.4 Bugs in the Technology -- 6.4.4.5 Dependence on Weather -- 6.4.4.6 Hackable Drone Technology -- 6.5 Conclusion -- References -- Chapter 7 An Approach for Avoiding Collisions with Obstacles in Order to Enable Autonomous Cars to Travel Through Both Static and Moving Environments -- 7.1 Introduction -- 7.1.1 A Brief Overview of Driverless Cars -- 7.1.2 Objectives -- 7.1.3 Possible Uses for a Car Without a Driver -- 7.2 Related Works -- 7.3 Methodology of the Proposed Work -- 7.4 Experimental Results and Analysis -- 7.5 Results and Analysis -- 7.6 Conclusion -- References -- Chapter 8 Drivers' Emotions' Recognition Using Facial Expression from Live Video Clips in Autonomous Vehicles -- 8.1 Introduction -- 8.2 Related Work -- 8.2.1 Face Detection -- 8.2.2 Facial Emotion Recognition -- 8.3 Proposed Method -- 8.3.1 Dataset -- 8.3.2 Preprocessing -- 8.3.3 Grayscale Equalization. 327 $a8.4 Results and Analysis -- 8.5 Conclusions -- References -- Chapter 9 Models for the Driver Assistance System -- 9.1 Introduction -- 9.2 Related Survey -- 9.3 Proposed Methodology -- 9.3.1 Proposed System -- 9.3.2 Data Acquisition -- 9.3.3 Noise Reduction -- 9.3.4 Feature Extraction -- 9.3.5 Histogram of Oriented Gradients -- 9.3.6 Local Binary Pattern -- 9.3.7 Feature Selection -- 9.3.8 Classification -- 9.4 Experimental Study -- 9.4.1 Quantitative Investigation on the NTHU Drowsy Driver Detection Dataset -- 9.5 Conclusion -- References -- Chapter 10 Control of Autonomous Underwater Vehicles -- 10.1 Introduction -- 10.2 Literature Review -- 10.3 Control Problem in AUV Control System -- 10.4 Methodology -- 10.5 Results -- References -- Chapter 11 Security and Privacy Issues of AI in Autonomous Vehicles -- 11.1 Introduction -- 11.2 Development of Autonomous Cars with Existing Review -- 11.3 Automation Levels of Autonomous Vehicles -- 11.4 The Architecture of an Autonomous Vehicle -- 11.5 Threat Model -- 11.6 Autonomous Vehicles with AI in IoT-Enabled Environments -- 11.7 Physical Attacks Using AI Against Autonomous Vehicles -- 11.8 AI Cybersecurity Issues for Autonomous Vehicles -- 11.9 Cyberattack Defense Mechanisms -- 11.9.1 Identity-Based Approach -- 11.9.2 Key-Based Solution -- 11.9.3 Trust-Based Solution -- 11.9.4 Solution Based on Behavior Detection -- 11.10 Solution Based on Machine Learning -- 11.11 Conclusion -- References -- Index -- EULA. 330 $aWith the advent of advanced technologies in AI, driverless vehicles have elevated curiosity among various sectors of society. The automotive industry is in a technological boom with autonomous vehicle concepts. Autonomous driving is one of the crucial application areas of Artificial Intelligence (AI). Autonomous vehicles are armed with sensors, radars, and cameras. This made driverless technology possible in many parts of the world. In short, our traditional vehicle driving may swing to driverless technology. Many researchers are trying to come out with novel AI algorithms that are capable of handling driverless technology. The current existing algorithms are not able to support and elevate the concept of autonomous vehicles. This addresses the necessity of novel methods and tools focused to design and develop frameworks for autonomous vehicles. There is a great demand for energy-efficient solutions for managing the data collected with the help of sensors. These operations are exclusively focused on non-traditional programming approaches and depend on machine learning techniques, which are part of AI. There are multiple issues that AI needs to resolve for us to achieve a reliable and safe driverless technology. The purpose of this book is to find effective solutions to make autonomous vehicles a reality, presenting their challenges and endeavors. The major contribution of this book is to provide a bundle of AI solutions for driverless technology that can offer a safe, clean, and more convenient riskless mode of transportation. 410 0$aAdvances in Data Engineering and Machine Learning Series 606 $aAutomated vehicles$xTechnological innovations 615 0$aAutomated vehicles$xTechnological innovations. 676 $a629.2/046028563 700 $aRajendran$b Sathiyaraj$01840039 701 $aSabharwal$b Munish$01840040 701 $aHu$b Yu-Chen$0891622 701 $aBalusamy$b Balamurugan$01340583 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9911019479003321 996 $aArtificial Intelligence for Autonomous Vehicles$94419504 997 $aUNINA