LEADER 02529nam 2200433Ia 450 001 996386524003316 005 20200824132826.0 035 $a(CKB)4940000000082718 035 $a(EEBO)2240863958 035 $a(OCoLC)ocm17356917e 035 $a(OCoLC)17356917 035 $a(EXLCZ)994940000000082718 100 $a19880118d1693 uy | 101 0 $alat 135 $aurbn||||a|bb| 200 10$aJohannis Wallis S.T.D., Geometriæ Professoris Saviliani, in celeberrima Academia Oxoniensi De algebra tractatus$b[electronic resource] $ehistoricus & practicus : anno 1685 Anglice editus, nunc auctus Latine : cum variis appendicibus, partim prius editis Anglice, partim nunc primum editis : operum mathematicorum volumen alterum 210 $aOxoniæ $cE Theatro Sheldoniano$dMDCXCIII [1693] 215 $a[16], 879, [1] p., [2] leaves of plates $cill., port 300 $a"Imprimatur, Henr. Aldrich vice-can. Oxon. Aug. 28. 1693."--T.p. verso. 300 $aEngraved frontispiece portrait of the author signed: D. Loggan ad vivum delin. 1678; M. Burghers sculp. 1693. 300 $aErrata: p. [1] at end. 300 $aReproduction of original in the Huntington Library. 327 $aDe algebra tractatus -- De combinationibus, alternationibus, et partibus aliquotis, tractatus -- De sectionibus angularibus tractatus -- De angulo contactus et semicirculi tractatus, anno 1656 editus: ejusque Defensio, edita anno 1685 -- De postulato quinto, et definitione quinta lib. 6 Euclidis -- Cono-cuneus: seu Corpus partim conum partim cuneum repræsentans, geometrice consideratum -- De gravitate, et gravitatione -- De æstu maris, hypothesis nova -- Commercium epistolicum de quæstionibus quibusdam mathematicis nuper habitum -- Trigonometria planet sphærica, sive Methodus supputandi angulos & latera triangulorum in superficie plana aut sphærica existentium ... / authore Joh. Caswell. 330 $aeebo-0113 606 $aMathematics$vEarly works to 1800 606 $aAlgebra$vEarly works to 1800 615 0$aMathematics 615 0$aAlgebra 700 $aWallis$b John$f1616-1703.$0195680 701 2$aCaswell$b John$f1654 or 5-1712.$01014496 701 $aBurghers$b M$01001432 701 $aLoggan$b David$f1635-1700?$01006414 801 0$bEAH 801 1$bEAH 801 2$bWaOLN 906 $aBOOK 912 $a996386524003316 996 $aJohannis Wallis S.T.D., Geometriæ Professoris Saviliani, in celeberrima Academia Oxoniensi De algebra tractatus$92364268 997 $aUNISA LEADER 05532nam 2200709Ia 450 001 9911019406703321 005 20200520144314.0 010 $a9786611843144 010 $a9781281843142 010 $a1281843148 010 $a9783527617746 010 $a3527617744 010 $a9783527617753 010 $a3527617752 035 $a(CKB)1000000000377066 035 $a(EBL)481335 035 $a(OCoLC)289075526 035 $a(SSID)ssj0000120436 035 $a(PQKBManifestationID)11146453 035 $a(PQKBTitleCode)TC0000120436 035 $a(PQKBWorkID)10102320 035 $a(PQKB)11182201 035 $a(MiAaPQ)EBC481335 035 $a(PPN)153531282 035 $a(Perlego)2753818 035 $a(EXLCZ)991000000000377066 100 $a19960213d2004 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aChemical mechanical planarization of microelectronic materials /$fJoseph M. Steigerwald, Shyam P. Murarka, Ronald J. Gutmann 210 $aWeinheim $cWiley-VCH$d2004 215 $a1 online resource (339 p.) 300 $aDescription based upon print version of record. 311 08$a9780471138273 311 08$a0471138274 320 $aIncludes bibliographical references and index. 327 $aChemical Mechanical Planarization of Microelectronic Materials; CONTENTS; Preface; 1 Chemical Mechanical Planarization - An Introduction; 1.1 Introduction; 1.2 Applications; 1.3 The CMP Process; 1.4 CMP Tools; 1.5 Process Integration; 1.6 Conclusion and Book Outline; References; 2 Historical Motivations for CMP; 2.1 Advanced Metallization Schemes; 2.1.1 Interconnect Delay Impact on Performance; 2.1.2 Methods of Reducing Interconnect Delay; 2.1.3 Planarity Requirements for Multilevel Metallization; 2.2 Planarization Schemes; 2.2.1 Smoothing and Local Planarization; 2.2.2 Global Planarization 327 $a2.3 CMP Planarization2.3.1 Advantages of CMP; 2.3.2 Disadvantages of CMP; 2.3.3 The Challenge of CMP; References; 3 CMP Variables and Manipulations; 3.1 Output Variables; 3.2 Input Variables; References; 4 Mechanical and Electrochemical Concepts for CMP; 4.1 Preston Equation; 4.2 Fluid Layer Interactions; 4.3 Boundary Layer Interactions; 4.3.1 Fluid Boundary Layer; 4.3.2 Double Layer; 4.3.3 Metal Surface Films; 4.3.4 Mechanical Abrasion; 4.4 Abrasion Modes; 4.4.1 Polishing vs. Grinding; 4.4.2 Hertzian Indentation vs. Fluid-Based Wear; 4.5 The Polishing Pad; 4.5.1 Pad Materials and Properties 327 $a4.5.2 Pad Conditioning4.6 Electrochemical Phenomena; 4.6.1 Reduction-Oxidation Reactions; 4.6.2 Pourbaix Diagrams; 4.6.3 Mixed Potential Theory; 4.6.4 Example: Copper CMP in NH3-Based Slurries; 4.6.5 Example: Copper-Titanium Interaction; 4.7 Role of Chemistry in CMP; 4.8 Abrasives; References; 5 Oxide CMP Processes - Mechanisms and Models; 5.1 The Role of Chemistry in Oxide Polishing; 5.1.1 Glass Polishing Mechanisms; 5.1.2 The Role of Water in Oxide Polishing; 5.1.3 Chemical Interactions Between Abrasive and Oxide Surface; 5.2 Oxide CMP in Practice; 5.2.1 Polish Rate Results 327 $a5.2.2 Planarization Results5.2.3 CMP in Manufacturing; 5.2.4 Yield Issues; 5.3 Summary; References; 6 Tungsten and CMP Processes; 6.1 Inlaid Metal Patterning; 6.1.1 RIE Etch Back; 6.1.2 Metal CMP; 6.2 Tungsten CMP; 6.2.1 Surface Passivation Model for Tungsten CMP; 6.2.2 Tungsten CMP Processes; 6.3 Summary; References; 7 Copper CMP; 7.1 Proposed Model for Copper CMP; 7.2 Surface Layer Formation - Planarization; 7.2.1 Formation of Native Surface Films; 7.2.2 Formation of Nonnative Cu-BTA Surface Film; 7.3 Material Dissolution; 7.3.1 Removal of Abraded Material 327 $a7.3.2 Increasing Solubility with Complexing Agent7.3.3 Increasing Dissolution Rate with Oxidizing Agents; 7.3.4 Chemical Aspect of the Copper CMP Model; 7.4 Preston Equation; 7.4.1 Preston Coefficient; 7.4.2 Polish Rates; 7.4.3 Comparison of Kp Values; 7.5 Polish-Induced Stress; 7.6 Pattern Geometry Effects; 7.6.1 Dishing and Erosion in Cu/SiO2 System; 7.6.2 Optimization of Process to Minimize Dishing and Erosion; 7.6.3 Summary; References; 8 CMP of Other Materials and New CMP Applications; 8.1 The Front-End Applications in Silicon IC Fabrication 327 $a8.1.1 Polysilicon CMP for Deep Trench Capacitor Fabrication 330 $aChemical Mechanical Planarization (CMP) plays an important role in today's microelectronics industry. With its ability to achieve global planarization, its universality (material insensitivity), its applicability to multimaterial surfaces, and its relative cost-effectiveness, CMP is the ideal planarizing medium for the interlayered dielectrics and metal films used in silicon integrated circuit fabrication. But although the past decade has seen unprecedented research and development into CMP, there has been no single-source reference to this rapidly emerging technology-until now.Chemica 606 $aMicroelectronics$xMaterials 606 $aGrinding and polishing 615 0$aMicroelectronics$xMaterials. 615 0$aGrinding and polishing. 676 $a621.3815 676 $a621.38152 700 $aSteigerwald$b Joseph M$01841102 701 $aMurarka$b S. P$0463885 701 $aGutmann$b Ronald J$01841103 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9911019406703321 996 $aChemical mechanical planarization of microelectronic materials$94420721 997 $aUNINA