LEADER 02032nas 2200433 n 450 001 990008883470403321 005 20240229084546.0 011 $a0889-325X 035 $a000888347 035 $aFED01000888347 035 $a(Aleph)000888347FED01 035 $a000888347 091 $2CNR$aP 00063502 100 $a20090724a19879999km-y0itaa50------ba 101 0 $aeng 102 $aUS 110 $aauu-------- 200 1 $aACI materials journal 207 1$a1987- 210 $aDetroit$cAmerican Concrete Institute 443 0$1001000899369$12001$aJournal of the American Concrete Institute 452 0$12001$aACI materials journal 530 0 $aACI materials journal 675 $a666.94 676 $a620.1/36/05 712 02$aAmerican Concrete Institute 801 0$aIT$bACNP$c20090723 859 4 $uhttp://acnp.cib.unibo.it/cgi-ser/start/it/cnr/dc-p1.tcl?catno=42163&person=false&language=ITALIANO&libr=&libr_th=unina1$zBiblioteche che possiedono il periodico 901 $aSE 912 $a990008883470403321 958 $aBiblioteca. Dipartimento di Ingegneria dei Materiali e della Produzione dell'Università Federico II$b1987-1996;$c1993;1995-1996;$eCA$fDINMP 958 $aBiblioteca del Dipartimento di Ingegneria Strutturale Università degli Studi di Napoli "Federico II"$b1987-$fIINTC 959 $aDINMP 959 $aIINTC 996 $aACI materials journal$9242592 997 $aUNINA AP1 8 $6866-01$aNA105 Biblioteca. Dipartimento di Ingegneria dei Materiali e della Produzione dell'Università Federico II$bCA$ep.le Tecchio,80, 80125 Napoli (NA)$m081 7682595$m081 7682595$nit AP1 8 $6866-02$aNA129 Biblioteca del Dipartimento di Ingegneria Strutturale Università degli Studi di Napoli "Federico II"$eP.le Tecchion° 80, 80125 Napoli (NA)$m(081) 7683333$m(081) 7683332$nit AP2 40$aacnp.cib.unibo.it$nACNP Italian Union Catalogue of Serials$uhttp://acnp.cib.unibo.it/cgi-ser/start/it/cnr/df-p.tcl?catno=42163&language=ITALIANO&libr=&person=&B=1&libr_th=unina&proposto=NO LEADER 05563nam 2200721Ia 450 001 9911019277903321 005 20200520144314.0 010 $a9786612382154 010 $a9781282382152 010 $a1282382152 010 $a9780470824443 010 $a0470824441 010 $a9780470824436 010 $a0470824433 035 $a(CKB)1000000000799889 035 $a(EBL)479828 035 $a(SSID)ssj0000365947 035 $a(PQKBManifestationID)11296468 035 $a(PQKBTitleCode)TC0000365947 035 $a(PQKBWorkID)10413875 035 $a(PQKB)11755440 035 $a(MiAaPQ)EBC479828 035 $a(OCoLC)521034718 035 $a(Perlego)2775334 035 $a(EXLCZ)991000000000799889 100 $a20090121d2009 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aSmooth tests of goodness of fit /$fJ.C.W. Rayner, O. Thas, D.J. Best 205 $a2nd ed. /$bO. Thas. 210 $aHoboken, NJ $cWiley$dc2009 215 $a1 online resource (300 p.) 225 0 $aWiley series in probability and statistics Smooth tests of goodness of fit using R 300 $aDescription based upon print version of record. 311 08$a9780470824429 311 08$a0470824425 320 $aIncludes bibliographical references and index. 327 $aSMOOTH TESTS OF GOODNESS OF FIT USING R; Contents; Preface; 1 Introduction; 1.1 The Problem Defined; 1.2 A Brief History of Smooth Tests; 1.3 Monograph Outline; 1.4 Examples; 2 Pearson's X2 Test; 2.1 Introduction; 2.2 Foundations; 2.3 The Pearson X2 Test - an Update; 2.3.1 Notation, Definition of the Test, and Class Construction; 2.3.2 Power Related Properties; 2.3.3 The Sample Space Partition Approach; 2.4 X2 Tests of Composite Hypotheses; 2.5 Examples; 3 Asymptotically Optimal Tests; 3.1 Introduction; 3.2 The Likelihood Ratio, Wald, and Score Tests for a Simple Null Hypothesis 327 $a3.3 The Likelihood Ratio, Wald and Score Tests for Composite Null Hypotheses3.4 Generalized Score Tests; 4 Neyman Smooth Tests for Simple Null Hypotheses; 4.1 Neyman's ?2 test; 4.2 Neyman Smooth Tests for Uncategorized Simple Null Hypotheses; 4.3 The Choice of Order; 4.4 Examples; 4.5 EDF Tests; 5 Categorized Simple Null Hypotheses; 5.1 Smooth Tests for Completely Specified Multinomials; 5.2 X2 Effective Order; 5.3 Components of X2P; 5.3.1 Construction of the Components; 5.3.2 Power Study; 5.3.3 Diagnostic Tests; 5.3.4 Cressie and Read Tests; 5.4 Examples; 5.5 Class Construction 327 $a5.5.1 The Alternatives5.5.2 Results of the Simulation Study; 5.5.3 Discussion; 5.6 A More Comprehensive Class of Tests; 5.7 Overlapping Cells Tests; 6 Neyman Smooth Tests for Uncategorized Composite Null Hypotheses; 6.1 Neyman Smooth Tests for Uncategorized Composite Null Hypotheses; 6.2 Smooth Tests for the Univariate Normal Distribution; 6.2.1 The Construction of the Smooth Test; 6.2.2 Simulation Study; 6.2.3 Examples; 6.2.4 Relationship with a Test of Thomas and Pierce; 6.3 Smooth Tests for the Exponential Distribution; 6.4 Smooth Tests for Multivariate Normal Distribution 327 $a6.5 Smooth Tests for the Bivariate Poisson Distribution6.5.1 Definitions; 6.5.2 Score Tests for the Bivariate Poisson Model; 6.5.3 A Smooth Covariance Test; 6.5.4 Variance Tests; 6.5.5 A Competitor for the Index of Dispersion Test; 6.5.6 Revised Index of Dispersion and Crockett Tests; 6.6 Components of the Rao-Robson X2 Statistic; 7 Neyman Smooth Tests for Categorized Composite Null Hypotheses; 7.1 Neyman Smooth Tests for Composite Multinomials; 7.2 Components of the Pearson-Fisher Statistic; 7.3 Composite Overlapping Cells and Cell Focusing X2 Tests 327 $a7.4 A Comparison between the Pearson-Fisher and Rao-Robson X2 Tests8 Neyman Smooth Tests for Uncategorized Composite Null Hypotheses: Discrete Distributions; 8.1 Neyman Smooth Tests for Discrete Uncategorized Composite Null Hypotheses; 8.2 Smooth and EDF Tests for the Univariate Poisson Distribution; 8.2.1 Definitions; 8.2.2 Size and Power Study; 8.2.3 Examples; 8.3 Smooth and EDF Tests for the Binomial Distribution; 8.3.1 Definitions; 8.3.2 Size and Power Study; 8.3.3 Examples; 8.4 Smooth Tests for the Geometric Distribution; 8.4.1 Definitions; 8.4.2 Size and Power Study; 8.4.3 Examples 327 $a9 Construction of Generalized Smooth Tests: Theoretical Contributions 330 $aIn this fully revised and expanded edition of Smooth Tests of Goodness of Fit, the latest powerful techniques for assessing statistical and probabilistic models using this proven class of procedures are presented in a practical and easily accessible manner. Emphasis is placed on modern developments such as data-driven tests, diagnostic properties, and model selection techniques. Applicable to most statistical distributions, the methodology described in this book is optimal for deriving tests of fit for new distributions and complex probabilistic models, and is a standard against which n 606 $aGoodness-of-fit tests 606 $aStatistical hypothesis testing 615 0$aGoodness-of-fit tests. 615 0$aStatistical hypothesis testing. 676 $a519.5/6 676 $a519.56 700 $aRayner$b J. C. W$0248333 701 $aBest$b D. J$0248334 701 $aThas$b O$g(Olivier)$01839370 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9911019277903321 996 $aSmooth tests of goodness of fit$94418577 997 $aUNINA