LEADER 01486nam 2200397Ia 450 001 996393290303316 005 20221108053235.0 035 $a(CKB)1000000000684032 035 $a(EEBO)2240958702 035 $a(OCoLC)12324956 035 $a(EXLCZ)991000000000684032 100 $a19850730d1676 uy | 101 0 $aeng 135 $aurbn||||a|bb| 200 14$aThe works of the Most Reverend Father in God, John Bramhall ..$b[electronic resource] $ecollected into one volume, in four tomes : to which is prefixt, the authour's life : and in the end is added (for the vindication of some of his writings) an exact copy of the records 210 $aDublin $cPrinted at His Majesties printing-house$d1676 215 $a[62], 1050, [3] p 300 $aPages 1022-1050, [1]-[3] in Latin. 300 $aThe discourses have special title pages, dated 1674-1676. 300 $aEdited by John Vesey, Abp. of Tuam. 300 $aReproduction of original in British Library. 330 $aeebo-0018 606 $aTheology$vEarly works to 1800 606 $aTheology$xHistory$y17th century 615 0$aTheology 615 0$aTheology$xHistory 700 $aBramhall$b John$f1594-1663.$0776019 701 $aVesey$b John$f1636-1716.$01004825 801 0$bEAA 801 1$bEAA 801 2$bm/c 801 2$bWaOLN 906 $aBOOK 912 $a996393290303316 996 $aThe works of the Most Reverend Father in God, John Bramhall .$92357374 997 $aUNISA LEADER 12385nam 22005413 450 001 9911019231103321 005 20240520064207.0 010 $a9781119827207$b(electronic bk.) 010 $z9781119827184 010 $a9781119827214 035 $a(MiAaPQ)EBC30783603 035 $a(Au-PeEL)EBL30783603 035 $a(CKB)28493172900041 035 $a(Perlego)4260183 035 $a(EXLCZ)9928493172900041 100 $a20231014d2023 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aFundamentals and Applications of Colour Engineering 205 $a1st ed. 210 1$aNewark :$cJohn Wiley & Sons, Incorporated,$d2023. 210 4$dİ2024. 215 $a1 online resource (400 pages) 225 1 $aWiley Series in Display Technology Series 311 08$aPrint version: Green, Phil Fundamentals and Applications of Colour Engineering Newark : John Wiley & Sons, Incorporated,c2023 9781119827184 327 $aIntro -- Fundamentals and Applications of Colour Engineering -- Contents -- Series Editor's Foreword -- Preface -- Introductory Notes -- 1 Instruments and Methods for the Colour Measurements Required in Colour Engineering -- 1.1 Introduction -- 1.1.1 The Need for Colorimetry -- 1.1.2 The Principles of Colorimetry -- 1.1.3 Making the Transition from What We "See" to Quantifying How We "Match" a Colour -- 1.2 Visual Colorimetry -- 1.2.1 A Method to Uniquely Map the Colour of Lights and Objects -- 1.2.2 Development of the CIE Method of Visual Colorimetry -- 1.2.3 Applications of Visual Colorimetry -- 1.2.4 Disadvantages of Visual Colorimetry -- 1.3 Analogue Simulation of Visual Colorimetry -- 1.3.1 Replacing the Human Eye with an Optoelectronic Sensor -- 1.3.2 Substituting Coloured Filters to Approximate the CIE Colour-Matching Functions -- 1.3.3 Assessing the "Goodness of Fit" of a Set of Colorimeter Filters -- 1.3.4 Schematic Description of Analogue Filter Colorimeters -- 1.3.5 Disadvantages of Analogue Filter Colorimeters -- 1.4 Digital Simulation of Visual Colorimetry -- 1.4.1 Replacing the Analogue Filters with an Abridged Spectrometer -- 1.4.2 Assessing the "Goodness of Fit" of Abridged Spectrometers -- 1.4.3 Schematic Description of Digital Spectrocolorimeters -- 1.4.4 Advantages and Disadvantages of Digital Spectrocolorimeters -- 1.5 Selecting and Using Colorimeters and Spectrocolorimeters -- 1.5.1 Reading and Understanding Specifications and Technical Literature -- 1.5.2 Verifying Performance Specifications -- 1.5.3 Standards of Colour and Colour-difference -- 1.5.4 Sources of Error and Uncertainty in the Measurement of Reflectance, Transmittance and Radiance -- 1.6 Geometric Requirements for Colour Measurements -- 1.6.1 Colour Measurements from Self-Luminous Objects -- 1.6.2 Colour Measurements from Reflecting or Transmitting Objects. 327 $a1.7 Conclusions and Expectations -- 1.7.1 Current CIE and ISO Activities in Colour and Colour-difference Measurements -- 1.7.2 Quality Management Systems and Colour Measurements -- References -- 2 Colorimetry and Colour Difference -- 2.1 Introduction -- 2.2 Colorimetry -- 2.3 Normalization -- 2.4 Colour Matching Functions -- 2.5 Illuminants -- 2.6 Data for Observers and Illuminants -- 2.7 Range and Interval -- 2.8 Calculation of Chromaticity -- 2.9 Calculation of CIE 1976 Uniform Colour Spaces -- 2.10 Inversion of CIELAB Equations -- 2.11 Colour Difference -- 2.12 Problems with Using UCS Colour Difference -- 2.13 Uniformity of the Components of Colour Difference -- 2.13.1 Chroma -- 2.13.2 Hue -- 2.13.3 Lightness -- 2.14 Viewing Conditions -- 2.15 Surface Characteristics -- 2.16 Acceptability of Colour Differences -- 2.17 Overcoming the Limitations of UCS Colour Difference with Advanced Colour Difference Metrics -- 2.18 CIE94 -- 2.19 CIEDE2000 -- 2.20 Progress on Colour Difference Metrics since CIEDE2000 -- 2.21 3D Colour Difference -- 2.22 Colour Difference in High Luminance Conditions -- 2.23 Colour Difference Formulas Based on Colour Appearance Models -- 2.24 Limitations in the Use of Advanced Colour Difference Metrics in Colour Imaging -- 2.25 Basis Conditions -- 2.25.1 Illuminant -- 2.25.2 Illuminance -- 2.25.3 Sample Separation -- 2.25.4 Sample Size and Image Structure -- 2.26 Colour Difference in Complex Images -- 2.27 Acceptability and Perceptibility -- 2.28 Large vs Small Differences -- 2.29 Deriving Colour Difference Tolerances -- 2.30 Sample Preparation -- 2.31 Psychophysical Experiments -- 2.31.1 Observer Variability and Experience -- 2.32 Colour Difference Judgements by Observers with a Colour Vision Deficiency -- 2.33 Calculating Colour Tolerances from Experimental Data. 327 $a2.34 Calculation of Discrimination Ellipsoids and Tolerance Distributions -- 2.34.1 Calculation of Parametric Constants in Weightings Functions -- 2.35 Calculation of Acceptability Thresholds -- 2.36 Evaluating Colour Difference Metrics -- 2.37 Conclusion -- References -- 3 Fundamentals of Device Characterization -- 3.1 Introduction -- 3.1.1 Objectives -- 3.2 Characterization Methods -- 3.2.1 Test Charts -- 3.2.2 Calibration -- 3.2.2.1 Matching Aim Values -- 3.2.2.2 Optimizing Performance -- 3.2.2.3 Perceptual Uniformity of Device Values -- 3.2.2.4 Optimization for Machine Vision -- 3.2.3 Linearization -- 3.3 Numerical Models -- 3.3.1 Regression Methods Used in Characterization -- 3.3.1.1 First Order Model -- 3.3.1.2 Higher Order Models -- 3.3.1.3 Choosing the Polynomial Order -- 3.3.1.4 Spline Methods -- 3.3.1.5 Weighted Regression -- 3.3.2 Domain -- 3.3.3 Optimization -- 3.3.4 Noisy and Discontinuous Data -- 3.3.5 Machine Learning -- 3.4 Look-Up Tables with Interpolation -- 3.4.1 Packing -- 3.4.2 Extraction -- 3.4.3 Interpolation -- 3.4.4 LUT Implementation -- 3.4.4.1 LUT implementation in ICC profiles -- 3.5 Evaluating Accuracy - Training and Test Data -- References -- 4 Characterization of Input Devices -- 4.1 Input Channels -- 4.2 Characterization Goals -- 4.3 Transform Encoding -- 4.4 Dynamic Range -- 4.5 Input Characterization Methods -- 4.5.1 Scanners -- 4.6 Targets -- 4.7 Modelling -- 4.7.1 Digital Cameras -- 4.8 Target-Based Characterization -- 4.9 Targets -- 4.10 Modelling -- 4.10.1 Spectral Sensitivity-based Methods -- 4.10.2 Machine Learning Methods -- 4.10.3 Spectral Characterization of Input Devices -- References -- 5 Color Processing for Digital Cameras -- 5.1 Introduction -- 5.2 Basics of a Camera Sensor -- 5.3 The Camera Pipeline -- 5.3.1 Defective Pixel Correction -- 5.3.2 Black-Level Correction and Normalization. 327 $a5.3.3 Lens Shading Correction -- 5.3.4 Autofocus, Autoexposure, Auto White Balance -- 5.3.4.1 Autoexposure -- 5.3.4.2 Autofocus -- 5.3.5 White Balance and Auto White Balance -- 5.3.5.1 White Balance -- 5.3.5.2 Manual and Auto White Balance -- 5.3.6 Demosaicing -- 5.3.7 Noise Reduction -- 5.3.8 Color Space Transform to Device-Independent Color Space -- 5.3.9 Photo-Finishing/Rendering -- 5.3.9.1 General and Selective Color Manipulation -- 5.3.9.2 Global and Local Tone-Mapping -- 5.3.9.3 Sharpening/Noise and Grain -- 5.3.9.4 Image Resizing/Super-Resolution -- 5.3.10 Color Mapping to Final Image Encoding Color Space -- 5.3.11 Compression and Save to Storage -- 5.3.12 RAW Image Capture -- 5.4 Multi-Frame Processing -- 5.4.1 HDR Imaging -- 5.4.2 Low-Light/Night-Mode Imaging -- 5.5 Towards the Neural ISP -- 5.6 Concluding Remarks -- Acknowledgment -- References -- 6 Display Calibration -- 6.1 Introduction -- 6.2 From CRT to Contemporary Display Technologies -- 6.3 The Display Never Sleeps? Merging Television and Computer Display Standards -- 6.4 The Evolution of Display Calibration Capabilities -- 6.4.1 Gamut Mapping -- 6.4.2 Manual Calibration -- 6.4.3 One Dimensional Lookup -- 6.3.4 The Matrix Shaper Architecture -- 6.4.5 Single 3-Dimensional LUT -- 6.4.5.1 3DLUT Considerations -- 6.4.6 Hybrid Matrix Shaper Utilizing 3DLUT Followed by a 1DLUT -- 6.5 Measurement Set Requirements -- 6.5.1 Pattern Generation -- 6.5.2 How Many Measurements are Needed? -- 6.5.3 Methods to Mitigate Drift in Display Measurements -- 6.6 Calibration Validation Methodologies -- 6.6.1 Numerical Scales -- 6.6.2 Visual Evaluation Targets and Methods -- 6.7 Low Blue Light Developments -- 6.8 Conclusions -- References -- 7 Characterizing Hard Copy Printers -- 7.1 Introduction -- 7.2 Properties of Hard Copy Printers -- 7.3 Substrates and Inks -- 7.3.1 Fluorescent Whitening Agents. 327 $a7.3.2 Inks -- 7.4 Colour Gamut -- 7.5 Halftoning -- 7.6 Mechanical Printing Systems -- 7.7 Printing Conditions -- 7.8 Digital Systems -- 7.9 RGB Printers -- 7.10 Test Charts -- 7.11 Printer Models -- 7.12 Block Dye Model -- 7.13 Physical Models -- 7.13.1 Density -- 7.13.2 Dot Area Models -- 7.13.2.1 Murray-Davies -- 7.13.2.2 Yule-Nielsen -- 7.13.2.3 Clapper-Yule -- 7.13.2.4 Additivity Failure -- 7.13.3 Neugebauer -- 7.13.3.1 Modified and Extended Neugebauer Equations -- 7.13.3.2 N-Modified Neugebauer Equations -- 7.13.4 Vector-Corrected Neugebauer Equations -- 7.13.4.1 Cellular Extensions -- 7.13.4.2 Spectral Extensions -- 7.13.4.3 Evaluation of Different Forms of the Neugebauer Equations -- 7.13.5 Colorant Models -- 7.13.5.1 Masking Equations -- 7.13.6 Beer-Bouguer -- 7.13.7 Kubelka-Munk -- 7.13.8 Extensions -- 7.14 Numerical Models and Look-up Tables -- 7.14.1 Black Printer -- 7.14.1.1 Spectral Grey-Component Replacement -- 7.14.1.2 Black Generation Algorithm -- 7.15 Inverting the Model -- 7.16 Multi-Colour and Spot Colour Characterization -- 7.17 Spectral Characterization -- 7.18 White Ink -- 7.19 Reducing the Frequency of Characterization -- 7.20 Conclusions -- References -- 8 Colour Encodings -- 8.1 Introduction -- 8.2 Colour Encoding Components -- 8.3 Colour Spaces -- 8.4 Device and Colour Space Encodings -- 8.5 Colorimetric Interpretation -- 8.6 Image State -- 8.7 Standard 3-Component Colour Space Encodings -- 8.8 Colour Gamut -- 8.8.1 Extended Colour Gamut -- 8.9 Precision and Range -- 8.9.1 High Dynamic Range -- 8.9.2 Negative Values -- 8.10 Luminance/Chrominance Encodings -- 8.11 Conversion to Colorimetry -- 8.12 Implementation Issues -- 8.13 File Formats -- References -- 9 Colour Gamut Communication -- 9.1 Introduction -- 9.1.1 Device Colour Gamut and the Usable Colour Gamut -- 9.1.2 Colour Space -- 9.1.3 Factors Affecting Colour Gamut. 327 $a9.1.4 Gamut of an Image. 330 $a"The Wiley SID book series organizers and our editorial team believe that there is a strong need in the display field for a comprehensive book describing the manufacturing of the display panels used in today's display products. The objective of this book, entitled Flat Panel Display Manufacturing, is to give a broad overview for the key manufacturing topics, serving as a reference text. The book will cover all aspects of the manufacturing processes of TFT LCD and AMOLED, which includes the fabrication processes of the TFT backplane, cell process, module packaging, and test processes. Additionally, the book introduces important topics in manufacturing science and engineering related to quality control, factory and supporting systems architectures, and green manufacturing. The book can serve as a reference book not only for display engineers in the field, but also for students in display fields. One might think that flat panel display manufacturing is a mature subject, but the state of the art manufacturing technologies enabling today's high end TFT LCDs and OLED displays are still evolving for the next generation displays. The editorial team invited authors from major display manufacturers and experts in each manufacturing topic (equipment, processing, etc.). Last but not least, we are also grateful to the Wiley SID book series team, and especially to Dr. Ian Sage for help planning, reviewing the early drafts, and bringing this book to light."--$cProvided by publisher. 410 0$aWiley Series in Display Technology Series 606 $aColor 606 $aFlat panel displays 615 0$aColor. 615 0$aFlat panel displays. 676 $a535.6 700 $aGreen$b Phil$0734266 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 912 $a9911019231103321 996 $aFundamentals and Applications of Colour Engineering$94418691 997 $aUNINA