LEADER 01005nam 2200313Ia 450 001 996395584903316 005 20221108020738.0 035 $a(CKB)4330000000318591 035 $a(EEBO)2248501354 035 $a(OCoLC)09523464 035 $a(EXLCZ)994330000000318591 100 $a19830518d1678 uy | 101 0 $aeng 135 $aurbn||||a|bb| 200 12$aA funeral sermon$b[electronic resource] $epreached upon the death of the reverend and excellent divine Dr. Thomas Manton who deceas'd the 18th of October 1677 /$fby William Bates 210 $aLondon $cPrinted by J.D. for Barbazon Aylmer$d1678 215 $a59, [1] p 300 $aReproduction of original in the British Library. 330 $aeebo-0018 606 $aFuneral sermons 615 0$aFuneral sermons. 700 $aBates$b William$f1625-1699.$0793132 801 0$bUMI 801 1$bUMI 801 2$bWaOLN 906 $aBOOK 912 $a996395584903316 996 $aA funeral sermon$92345512 997 $aUNISA LEADER 11777nam 22006013 450 001 9911019190403321 005 20240328080228.0 010 $a9781394169467 010 $a1394169469 010 $a9781394169450 010 $a1394169450 035 $a(CKB)31073504500041 035 $a(MiAaPQ)EBC31227221 035 $a(Au-PeEL)EBL31227221 035 $a(Exl-AI)31227221 035 $a(Perlego)4367299 035 $a(OCoLC)1428259540 035 $a(EXLCZ)9931073504500041 100 $a20240328d2024 uy 0 101 0 $aeng 135 $aur||||||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aFriction Stir Welding and Processing $eFundamentals to Advancements 205 $a1st ed. 210 1$aNewark :$cJohn Wiley & Sons, Incorporated,$d2024. 210 4$d©2024. 215 $a1 online resource (355 pages) 311 08$a9781394169436 311 08$a1394169434 327 $aCover -- Title Page -- Copyright Page -- Contents -- About the Editors -- List of Contributors -- Preface -- Acknowledgments -- List of Figures -- List of Tables -- 1 Friction Stir Welding: An Overview -- 1.1 Introduction -- 1.2 FSW Working Principle -- 1.3 Weld Zones -- 1.4 Variants of FSW -- 1.4.1 Friction Stir Spot Welding (FSSW) -- 1.4.2 Stationary Shoulder FSW -- 1.4.3 Friction Stir Riveting -- 1.4.3.1 FricRiveting -- 1.4.3.2 Friction Stir Blind Riveting -- 1.4.4 Friction Stir Scribe -- 1.4.5 Friction Surfacing -- 1.4.6 Friction Stir Processing -- 1.5 Defects -- 1.6 Advantages and Limitations of FSW -- 1.6.1 Advantages -- 1.6.2 Limitations -- 1.7 Conclusion and Future Prospectus -- Acknowledgments -- References -- 2 Friction Stir Welding and Single-Point Incremental Forming: State-of-the-Art -- 2.1 Introduction -- 2.2 Friction Stir Welding (FSW) -- 2.2.1 Friction Stir Welding Process Features -- 2.2.2 FSW Process Parameters -- 2.2.3 Feasibility and Application of FSW -- 2.3 Single-Point Incremental Forming (SPIF) -- 2.4 FSW and SPIF -- 2.5 Summary and Outlook -- References -- 3 Friction Stir Brazing and Friction Stir Vibration Brazing -- 3.1 Introduction to FSB -- 3.2 Variants of FSB -- 3.3 Two Case studies -- 3.3.1 Joining of Low Carbon Steels by Application of Friction Stir Brazing and Sn-Pb Alloy as Filler -- 3.3.2 Intermetallic Compound Formation and Mechanical Characteristics of Brazed Samples Made by Friction Stir Vibration Brazing with Sn-Pb Filler Material and SiC Reinforcing Particle -- 3.4 Application of FSB and Its Variants in Industry -- 3.5 Summary and Future Directions -- References -- 4 Fundamentals of Friction Stir Processing -- 4.1 Friction Stir Processing (FSP): Background -- 4.2 Working Principle of FSP -- 4.3 Comparison with Other Severe Plastic Deformation (SPD) Techniques -- 4.4 Process Variables -- 4.4.1 Tool Geometry. 327 $a4.4.2 Machine Variables -- 4.4.3 Number of Passes -- 4.4.4 Cooling-Assisted FSP -- 4.5 Mechanisms of Microstructural Evolution During FSP -- 4.6 Critical Issues in FSP -- 4.7 Future Scope -- References -- 5 Role of FSP in Surface Engineering -- 5.1 Introduction -- 5.2 Role of Surface Modification Techniques -- 5.3 Thermal Spray Technique -- 5.4 FSP - Solid-State Coating Process -- 5.4.1 Friction Stir Processing Technique -- 5.5 Process Parameters of FSP: Surface Engineering -- 5.5.1 Influence of FSP Parameters on Wear Behavior -- 5.5.2 Influence of FSP Parameters on Corrosion Behavior -- 5.6 Inappropriate Characteristics of Surface Modification -- 5.7 Summary -- References -- 6 Surface Composite Fabrication Using FSP -- 6.1 Introduction -- 6.2 Reinforcement Incorporation Approaches -- 6.3 Effect of Process Parameters -- 6.3.1 Effect of Tool Rotational and Traverse Speed -- 6.3.2 Effect of Tool Tilt Angle -- 6.3.3 Effect of Tool Plunge Depth -- 6.3.4 Effect of Number of FSP Passes -- 6.4 Microstructural Evolution and Mechanical Properties -- 6.4.1 Microstructural Evolution -- 6.4.2 Mechanical Properties -- 6.5 Strengthening Mechanisms -- 6.5.1 Grain Refinement Strengthening -- 6.5.2 Dislocation Strengthening Due to CTE Mismatch -- 6.5.3 Orowan Strengthening -- 6.5.4 Strengthening by Load Sharing (Shear Lag Model) -- 6.6 Defects -- 6.7 Summary and Future Directions -- References -- 7 Friction Stir Welding of Dissimilar Metals -- 7.1 Introduction -- 7.2 Application Areas of Dissimilar Material Joining -- 7.3 Issues for Dissimilar Material Joining -- 7.4 FSW of Dissimilar Materials -- 7.4.1 FSW of Dissimilar Aluminum Alloys -- 7.4.2 FSW of Aluminum-to-Copper -- 7.4.3 FSW of Aluminum-to-Titanium -- 7.4.4 FSW of Aluminum-to-Steel -- 7.5 Recent Developments in Tool Design and Tool Materials -- 7.6 Parameter Optimization. 327 $a7.7 Common Defects that Occur in FSW of Dissimilar Metal Joining -- 7.8 Future Recommendations for Dissimilar Metal Joining -- Acknowledgments -- References -- 8 Friction Stir Welding of Aluminum and Its Alloy -- 8.1 Introduction -- 8.2 Fundamentals of FSW -- 8.3 FSW of Aluminum and Its Alloy -- 8.4 Influences of Process Parameters -- 8.4.1 Tool Profile -- 8.4.2 Rotational Speed -- 8.4.3 Tool Tilt Angle -- 8.4.4 Axial Force -- 8.4.5 Welding Speed -- 8.5 Testing and Characterization of FSW of Al and Its Alloy -- 8.5.1 Tensile Tests -- 8.5.2 Hardness Test -- 8.5.3 Microstructure Evolution -- 8.6 Additive Mixed Friction Stir Process of Al and Its Alloy -- 8.7 Applications -- 8.8 Conclusions -- References -- 9 Mechanical Characterization of FSWed Joints of Dissimilar Aluminum Alloys of AA7050 and AA6082 -- 9.1 Introduction -- 9.2 Materials and Methods -- 9.3 Results and Discussion -- 9.3.1 Tensile Strength -- 9.3.2 Microhardness -- 9.3.3 Microstructural Evaluation -- 9.3.4 Fractured Surface Analysis -- 9.3.5 Conclusions -- References -- 10 Sample Preparation and Microstructural Characterization of Friction Stir Processed Surface Composites -- 10.1 Introduction -- 10.2 Sample Preparation for Microscopic Analysis of Metals, Alloys, and Composites -- 10.2.1 Method of Sampling -- 10.2.2 Initial Preparation -- 10.2.3 Mounting of Samples -- 10.2.4 Polishing of Samples -- 10.2.5 Method of Polishing -- 10.2.6 Fine Polishing -- 10.3 Etching -- 10.3.1 Methods of Etching -- 10.4 Microstructural Evolution -- 10.4.1 Microstructural Zones -- 10.4.2 Sample Preparation for SEM Analysis -- Acknowledgment -- References -- 11 Microstructural Characterization and Mechanical Testing of FSWed/FSPed Samples -- 11.1 Introduction -- 11.2 Microstructural Characterization -- 11.2.1 Optical Microscopy Examination -- 11.2.2 X-ray Diffraction (XRD) Analysis. 327 $a11.2.3 Scanning Electron Microscopy (SEM) -- 11.2.4 Transmission Electron Microscopy (TEM) -- 11.2.5 Electron Backscatter Diffraction (EBSD) Examination -- 11.3 Mechanical Testing -- 11.3.1 Microhardness -- 11.3.2 Tensile Strength -- 11.3.3 Compressive Strength -- 11.3.4 Nano-indention -- 11.3.5 Fatigue Testing -- 11.4 Conclusions -- References -- 12 Comparative Analysis of Microstructural and Mechanical Characteristics of Reinforced FSW Welds -- 12.1 Introduction -- 12.2 Friction Stir Welding (FSW) -- 12.3 Reinforcing Materials-Based Fabrication of FSW Welds -- 12.4 Joinability of Reinforced FSW Welds -- 12.5 Metallurgical Characteristics of FSW Reinforced Welds -- 12.5.1 Macrostructure of Reinforced FSW Welds -- 12.5.1.1 Morphological Characteristics of the Processed Zone -- 12.5.1.2 Welding Parameters Effect on the Morphology of NZ -- 12.5.2 Microstructural Characteristics of Reinforced FSW Welds -- 12.5.2.1 Reinforcement Particle's Addition Effect on the Evolution of Grain -- 12.5.2.2 Grain Size Variation in Reinforced FSW Welds -- 12.5.2.3 Reinforcement Particles Distribution -- 12.5.2.4 Morphology of Reinforcement Particles -- 12.5.2.5 Intermetallic Particles -- 12.6 Mechanical Behavior of Reinforced FSW Welds -- 12.6.1 Microhardness Characterization -- 12.6.1.1 Tensile Behavior -- 12.6.1.2 Process Parameters Effect on UTS -- 12.6.1.3 FSW Passes and Addition of RPs Effect on UTS -- 12.6.1.4 Fracture behavior -- 12.7 Conclusions -- 12.8 Future Challenges -- References -- 13 Summary of Efforts in Manufacturing of Sandwich Sheets by Various Joining Methods Including Solid-State Joining Method -- 13.1 Introduction -- 13.2 Sandwich Sheets -- 13.3 Classification of Sandwich Sheet Structures -- 13.4 Applications -- 13.4.1 High-Speed Train Nose -- 13.4.2 Marine -- 13.4.3 Wind Turbine Blades -- 13.4.4 Aerospace -- 13.4.5 Ship Building. 327 $a13.5 Fabrication Methods -- 13.5.1 Lay-Up Method -- 13.5.2 Prepreg Method -- 13.5.3 Adhesive Bonding -- 13.5.4 Solid-State Joining Methods -- 13.5.4.1 Friction Stir Welding (FSW)/Friction Stir Spot Welding (FSSW) -- 13.5.4.2 Accumulative Roll Bonding -- 13.5.4.3 Diffusion Bonding -- 13.6 Summary -- References -- 14 Defects in Friction Stir Welding and its Variant Processes -- 14.1 Introduction -- 14.2 General Defects in FSW -- 14.2.1 Defect Classification -- 14.3 Characteristic Defects in Friction Stir Butt and Lap Joints -- 14.3.1 Friction Stir Butt joints -- 14.3.2 Friction Stir Lap Joints -- 14.4 Distinctive Defects in Major Friction Stir Variants -- 14.4.1 Bobbin Stir Welding -- 14.4.2 Counter-rotating Twin-Tool Friction Stir -- 14.4.3 Refill Friction Stir Spot Welding -- 14.4.4 Friction Stir Additive Manufacturing -- 14.5 Solutions to Avoid Defects in Friction Stir-Based Processes -- 14.6 Summary and Concluding Remarks -- Acknowledgment -- References -- 15 Nondestructive Ultrasonic Inspections, Evaluations, and Monitoring in FSW/FSP -- 15.1 Introduction -- 15.2 Ultrasonic Wave Behaviors in FSWed/FSPed Samples -- 15.2.1 Influence From Defects on Ultrasound Wave Traveling -- 15.2.2 Influence From Microstructures on Ultrasound Wave Traveling -- 15.2.3 Influence From Residual Stresses On Ultrasound Wave Traveling -- 15.3 Common Ultrasonic Inspection and Evaluation Methods for FSWed/FSPed Samples -- 15.3.1 Ultrasound Inspections on Defects and Flaws for FSWed/FSPed Samples -- 15.3.2 Ultrasound Evaluations on Mechanical Properties for FSWed/FSPed Samples -- 15.3.3 Ultrasound Monitoring for FSW/FSP -- 15.4 Case Studies on Recent Novel Ultrasound Evaluation and Monitoring in FSW/FSP -- 15.4.1 Ultrasonic Elastographic Evaluated Dissimilar FSWed Samples -- 15.4.2 Ultrasonic Elastographic Evaluated FSPed Sample. 327 $a15.4.3 Ultrasonic Effective Residual Stress Mapping on FSPed Sample. 330 $aThis comprehensive volume on Friction Stir Welding (FSW) and Processing delves into the fundamental principles and advanced techniques of FSW, a solid-state joining process used in various industries. Edited by Dr. Sandeep Rathee, Dr. Manu Srivastava, and Dr. J. Paulo Davim, the book covers topics such as the working principles of FSW and its variants, process parameters, and the mechanical properties of welded joints. It also explores the application of FSW in joining dissimilar metals and aluminum alloys, surface engineering, and composite fabrication. Intended for engineers, researchers, and professionals in the field of mechanical engineering, this book serves as a valuable resource for understanding the advancements and applications of FSW technology.$7Generated by AI. 606 $aFriction stir welding$7Generated by AI 606 $aMechanical engineering$7Generated by AI 615 0$aFriction stir welding 615 0$aMechanical engineering 676 $a671.52 700 $aRathee$b Sandeep$01840941 701 $aSrivastava$b Manu$01840942 701 $aDavim$b J. Paulo$0739914 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9911019190403321 996 $aFriction Stir Welding and Processing$94420512 997 $aUNINA LEADER 03058nam 22005415 450 001 9910254035203321 005 20230810213819.0 010 $a3-658-14830-6 024 7 $a10.1007/978-3-658-14830-0 035 $a(CKB)3710000000765477 035 $a(DE-He213)978-3-658-14830-0 035 $a(MiAaPQ)EBC4612959 035 $a(PPN)194513998 035 $a(EXLCZ)993710000000765477 100 $a20160725d2016 u| 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aHighly Accurate Spectroscopic Parameters from Ab Initio Calculations $eThe Interstellar Molecules l-C3H+ and C4 /$fby Christopher J. Stein 205 $a1st ed. 2016. 210 1$aWiesbaden :$cSpringer Fachmedien Wiesbaden :$cImprint: Springer Spektrum,$d2016. 215 $a1 online resource (XIV, 63 p. 24 illus.) 225 1 $aBestMasters,$x2625-3615 311 $a3-658-14829-2 320 $aIncludes bibliographical references. 327 $aPrevious Experimental and Theoretical Results for l-C3H+ and C4 -- Theoretical Methods -- Results for l-C3H+ -- Results for C4 in its X3?g-Ground State. 330 $aIn this thesis accurate predictions for the spectroscopic parameters of l-C3H+ and C4 are made from state-of-the-art electronic structure calculations. Both molecules are of interest to interstellar cloud chemistry and only scarce experimental information about their rovibrational properties is available. Christopher J. Stein recapitulates the basics of the computational methods applied and gives an in-depth description of the computer program developed for the rovibrational calculations. Contents Previous Experimental and Theoretical Results for l-C3H+ and C4 Theoretical Methods Results for l-C3H+ Results for C4 in its X3?g-Ground State Target Groups Lecturers and Students of Theoretical Chemistry, Spectroscopy and Astrochemistry The Author Christopher J. Stein is currently pursuing his PhD degree at the Theoretical Chemistry group of Prof. Dr. Markus Reiher at ETH Zurich. His research is focused on the development of new wave function methods and the automation of quantum-chemical multi-reference calculations. 410 0$aBestMasters,$x2625-3615 606 $aChemistry$xData processing 606 $aChemistry, Physical and theoretical 606 $aChemometrics 606 $aComputational Chemistry 606 $aPhysical Chemistry 606 $aMathematical Applications in Chemistry 615 0$aChemistry$xData processing. 615 0$aChemistry, Physical and theoretical. 615 0$aChemometrics. 615 14$aComputational Chemistry. 615 24$aPhysical Chemistry. 615 24$aMathematical Applications in Chemistry. 676 $a541.0285 700 $aStein$b Christopher J$4aut$4http://id.loc.gov/vocabulary/relators/aut$01063852 906 $aBOOK 912 $a9910254035203321 996 $aHighly Accurate Spectroscopic Parameters from Ab Initio Calculations$92535078 997 $aUNINA