LEADER 04575nam 2200721Ia 450 001 9911019190303321 005 20170815165611.0 010 $a9781283645089 010 $a1283645084 010 $a9781118343180 010 $a1118343182 010 $a9781118343210 010 $a1118343212 010 $a9781118343197 010 $a1118343190 035 $a(CKB)2560000000090073 035 $a(EBL)989209 035 $a(OCoLC)821889223 035 $a(SSID)ssj0000704799 035 $a(PQKBManifestationID)11419960 035 $a(PQKBTitleCode)TC0000704799 035 $a(PQKBWorkID)10719562 035 $a(PQKB)11087907 035 $a(MiAaPQ)EBC989209 035 $a(PPN)187227306 035 $a(Perlego)1003661 035 $a(EXLCZ)992560000000090073 100 $a20120427d2012 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aDiscovering superconductivity $ean investigative approach /$fGren Ireson 210 $aChichester, West Sussex $cWiley$d2012 215 $a1 online resource (187 p.) 300 $aDescription based upon print version of record. 311 08$a9781119991410 311 08$a1119991412 311 08$a9781119991403 311 08$a1119991404 320 $aIncludes bibliographical references and index. 327 $aDiscovering Superconductivity; Contents; List of Figures; List of Tables; Preface; Acknowledgements; To the Teacher; To the Student; SECTION I Introduction; 1 Resistivity and Conduction in Metals; 1.1 Introduction; 1.2 Resistivity; 1.3 Conduction in Metals; 1.4 Revisiting Ohm's Law; References; 2 A Brief History of Superconductivity; 2.1 Introduction; 2.2 The Beginning: Kwik Nagenoeg Nul; 2.3 1933 - Perfect Diamagnetism?; 2.4 The London Brothers; 2.5 1957 - The BCS Theory; 2.6 1962 - The Josephson Effect; 2.7 1986 - Bednorz and Mu?ller and Oxide Superconductors 327 $a2.8 2003 - Abrikosov, Ginzburg and Leggett - and the Future2.9 Getting Cold Enough; References; SECTION II Superconductivity; 3 An Explanation of Superconductivity?; 3.1 Transition Temperature; 3.2 Two-Fluid Model; 3.3 Critical Field, Critical Current; 3.4 Schawlow and Devlin; 3.5 The London Equation; 3.6 BCS Theory; 3.6.1 The Isotope Effect; 3.6.2 The Energy Gap; 3.7 An Alternative Approach to the Energy Gap; 3.7.1 Electron-Electron Attraction; References; 4 The Meissner-Ochsenfeld Effect; References; 5 Diamagnetic Effects; 5.1 Diamagnetism, Paramagnetism and Ferromagnetism; References 327 $a6 Persistence of Current6.1 Quinn and Ittner; References; 7 Type I and Type II Superconductors; 7.1 Critical Magnetic Field; References; 8 Flux Pinning; 8.1 Vortex and Flux Lines; 8.2 The Original Abrikosov; References; SECTION III Superconducting Materials; 9 Low-Temperature Superconductors; 10 Organic Superconductors; References; 11 High-Temperature Superconductors; 11.1 Magnesium Diboride; 11.2 Transition Temperature of High-Tc Superconductors; References; SECTION IV Applications; 12 Superconducting Wire; 13 Medical Imaging; 13.1 Magnetic Resonance Imaging (MRI) 327 $a13.2 Magnetoencephalography13.2.1 The Josephson Junction Revisited; 13.2.2 Neuronal Currents; References; 14 CERN and the LHC; References; 15 Maglev Trains; Appendices; A The BCS Theory; B Flux Penetration; C The Josephson Junction and the SQUID; D MRI; Generating the MRI Signal; References; E A Note on Superfluidity; F A Note on Safety; Index 330 $a Superconductivity is a quantum phenomenon that manifests itself in materials showing zero electrical resistance below a characteristic temperature resulting in the potential for an electric current to run continually through such a material without the need for a power source. Such materials are used extensively in medical and power applications, e.g. MRI and NMR machines. Discovering Superconductivity uses a series of practical and investigative activities, which can be used as tutor demonst 606 $aSuperconductivity$xStudy and teaching (Higher)$xActivity programs 606 $aSuperconductors 615 0$aSuperconductivity$xStudy and teaching (Higher)$xActivity programs. 615 0$aSuperconductors. 676 $a537.6/23076 676 $a537.623076 676 $a621.35 686 $aTEC039000$2bisacsh 700 $aIreson$b Gren$01840940 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9911019190303321 996 $aDiscovering superconductivity$94420511 997 $aUNINA