LEADER 02010nam 2200577 450 001 9910807343403321 005 20240115112529.0 010 $a90-272-6810-X 035 $a(CKB)3710000000494431 035 $a(EBL)4386596 035 $a(SSID)ssj0001570955 035 $a(PQKBManifestationID)16217977 035 $a(PQKBTitleCode)TC0001570955 035 $a(PQKBWorkID)13023207 035 $a(PQKB)11765786 035 $a(MiAaPQ)EBC4386596 035 $a(DLC) 2015030512 035 $a(EXLCZ)993710000000494431 100 $a20150803h20152015 uy| 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 04$aThe phonetics-phonology interface $erepresentations and methodologies /$fedited by Joaqui?n Romero, Mari?a Riera, Universitat Rovira I Virgili, Tarragona 210 1$aAmsterdam ;$aPhiladelphia :$cJohn Benjamins Publishing Company,$d[2015] 210 4$dİ2015 215 $a1 online resource (310 p.) 225 1 $aCurrent Issues in Linguistic Theory,$x0304-0763 ;$v335 300 $aDescription based upon print version of record. 311 $a90-272-4854-0 320 $aIncludes bibliographical references and index. 410 0$aAmsterdam studies in the theory and history of linguistic science.$nSeries IV,$pCurrent issues in linguistic theory ;$vv. 335. 606 $aGrammar, Comparative and general$xPhonology 606 $aNeutralization (Linguistics) 606 $aPhonetics$xResearch 606 $aPhonetics$xMethodology 615 0$aGrammar, Comparative and general$xPhonology. 615 0$aNeutralization (Linguistics) 615 0$aPhonetics$xResearch. 615 0$aPhonetics$xMethodology. 676 $a414 702 $aRomero$b Joaqui?n$c(Linguist), 702 $aRiera$b Mari?a 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910807343403321 996 $aThe phonetics-phonology interface$94043411 997 $aUNINA LEADER 11171nam 22005413 450 001 9911019138303321 005 20250217120731.0 010 $a9781119776550 010 $a1119776554 035 $a(CKB)37525562200041 035 $a(MiAaPQ)EBC31907275 035 $a(Au-PeEL)EBL31907275 035 $a(OCoLC)1500717330 035 $a(Exl-AI)31907275 035 $a(EXLCZ)9937525562200041 100 $a20250217d2025 uy 0 101 0 $aeng 135 $aur||||||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aFermentative Nutraceuticals 205 $a1st ed. 210 1$aNewark :$cJohn Wiley & Sons, Incorporated,$d2025. 210 4$dİ2025. 215 $a1 online resource (323 pages) 311 08$a9781119775638 311 08$a1119775639 327 $aCover -- Series Page -- Title Page -- Copyright Page -- Contents -- Preface -- Chapter 1 Bioactive Compounds and Their Benefits -- 1.1 Introduction -- 1.2 Bioactive Compounds of Microbial Origin -- 1.2.1 Bacterial Origin -- 1.2.1.1 Probiotics -- 1.2.1.2 Prebiotics -- 1.2.1.3 Biogenics -- 1.2.2 Microalgal Origin -- 1.2.2.1 Spirulina -- 1.2.2.2 Nostoc -- 1.2.2.3 Chlorella -- 1.2.2.4 Dunaliella -- 1.3 Bioactive Compounds of Animal Origin -- 1.3.1 Marine Invertebrates -- 1.3.1.1 Chitin and Chitosan -- 1.3.1.2 Glucosamine -- 1.3.1.3 Chondroitin -- 1.3.1.4 Collagen -- 1.3.2 Marine Fishes -- 1.3.2.1 Omega-3 Fatty Acids -- 1.4 Bioactive Compounds Derived from Mammals -- 1.4.1 Conjugated Linoleic Acid -- 1.4.2 Milk Peptides -- 1.4.3 L-Carnitine -- 1.4.4 Choline -- 1.4.5 Melatonin -- 1.5 Bioactive Compounds of Endophytic Origin -- 1.6 Conclusion -- References -- Chapter 2 Solid-State Fermentation of Plant-Based Food to Enhance Bioactive Components -- Introduction -- 2.1 Terpenes/Terpinoids -- 2.2 Alkaloids -- 2.3 Phenolic/Ployphenolics -- 2.4 Solid-State Fermentation -- 2.5 Important Aspects of SSF -- 2.6 Microorganisms Involved in SSF -- 2.6.1 Fungi -- 2.6.2 Bacteria -- 2.6.3 Yeast -- 2.7 Solid-State Fermentation for the Enhancement of Bioactive Components -- 2.7.1 Improvement of Phenolic Bioactive Components -- 2.7.2 Improvement of Alkaloids -- 2.7.3 Improvement of Terpenoids -- Conclusions -- References -- Chapter 3 Biopreservative Agents for Food Applications -- Abbreviations -- 3.1 Introduction -- 3.2 Need of Biopreservation -- 3.3 Fermentation: A Crucial Aspect of Biopreservation -- 3.4 Biopreservative Agents -- 3.5 Natural Antimicrobials: Their Classification -- 3.5.1 Lactic Acid Bacteria -- 3.5.2 Bacteriocins -- 3.5.2.1 Bacteriocin in Context with Hurdle Technology -- 3.6 Antimicrobial Agents in Plants and Animals. 327 $a3.6.1 Antimicrobial Agents From Animal Sources -- 3.6.1.1 Lysozyme -- 3.6.1.2 Pleurocidin -- 3.6.1.3 Defensin -- 3.6.1.4 Lactoferrin -- 3.6.1.5 Ovotransferrin -- 3.6.1.6 Protamine -- 3.6.1.7 Chitosan -- 3.6.2 Antimicrobial Agents From Plant Sources -- 3.6.2.1 Prohibitins -- 3.6.2.2 Inhibitins -- 3.6.2.3 Post Inhibitins -- 3.6.2.4 Phytoalexins -- 3.6.2.5 Plant Pigments -- 3.7 Bacteriophages and Endolysins: Applications in Food Industry -- 3.8 Conclusion -- References -- Chapter 4 Bioactive Peptides From Fermented Pulses -- 4.1 Introduction -- 4.2 Methods of Bioactive Peptide Production -- 4.2.1 Gastrointestinal Digestion -- 4.2.2 In Vitro Enzymatic Hydrolysis -- 4.2.3 Food Processing -- 4.2.4 Bacterial Fermentation -- 4.3 Pharmacological Properties of Bioactive Peptides -- 4.3.1 Anti-Hypertensive Activity -- 4.3.1.1 ACE Inhibitory Peptides From Pea (Pisum sativum) -- 4.3.1.2 ACE Inhibitory Peptides From Mung Bean (Vigna radiata) -- 4.3.1.3 ACE Inhibitory Peptides From Soybean (Glycine max) -- 4.3.1.4 ACE Inhibitory Peptides From Chickpea (Cicer arietinum) -- 4.3.1.5 ACE Inhibitory Peptides From Red Beans (Phaseolus vulgaris) -- 4.3.2 Antioxidant Activity -- 4.3.2.1 Antioxidant Activity of Pinto Bean -- 4.3.2.2 Antioxidant Activity of Common Bean -- 4.3.2.3 Antioxidant Properties of Soya Bean (Glycin max) -- 4.3.2.4 Antioxidant Properties of Chickpea (Cicer arietinum) -- 4.3.3 Anticancer Activity -- 4.3.3.1 Anticancer Activity of Common Bean -- 4.3.3.2 Anticancer Activity of Mung Bean -- 4.3.3.3 Anticancer Activity of Soybean -- 4.3.3.4 Anticancer Activity of Chickpea -- 4.3.4 Antimicrobial Property -- 4.3.4.1 Mung Bean -- 4.3.4.2 Soybean -- 4.3.4.3 Antimicrobial Peptides from Chickpea -- 4.3.4.4 Red Beans -- 4.3.4.5 Limia Beans -- 4.3.4.6 Bitter Beans -- 4.3.4.7 Haricot Beans -- 4.3.5 Antidiabetic Property -- 4.3.5.1 Glycine Max -- 4.3.5.2 Mung Bean. 327 $a4.3.5.3 Chickpea -- 4.3.5.4 Cow Pea -- References -- Chapter 5 Physiological Activities of Bioactive Peptides Against Diabetes and Obesity -- 5.1 Introduction -- 5.1.1 Sources of Bioactive Peptide -- 5.1.2 Pharmacological Properties of Bioactive Peptides -- 5.1.2.1 Antioxidant Properties of Bioactive Peptides -- 5.1.2.2 Antimicrobial Properties -- 5.1.2.3 Immunomodulatory Properties -- 5.1.2.4 Cytomodulatory Properties -- 5.1.2.5 Metabolic Effects -- 5.2 Bioactive Peptides on Human Health -- 5.2.1 Bioactive Peptides Against Obesity -- 5.2.2 Cholesterol-Lowering Peptides -- 5.2.3 Mechanism of Action of Antidiabetic Peptides Against Type 2 Diabetes (T2D) -- 5.2.4 Mechanism of Action of Anti-Inflammatory Peptides -- 5.3 Diversity in Production of Bioactive Peptides -- 5.3.1 Enzymatic Hydrolysis -- 5.3.1.1 In Vitro Study of Egg Hydrolysate (EH)/ Peptides -- 5.3.1.2 In Vivo Studies of Egg White Hydrolysate (EWH)/Peptides -- 5.3.1.3 In Vitro Studies of Soy Hydrolysates (SH)/ Peptides -- 5.3.1.4 In Vivo Studies of Soy Hydrolysate (SH)/ Peptides -- 5.3.2 Gastrointestinal Digestion -- 5.3.3 Fermentation -- 5.3.4 Genetic Engineering -- 5.4 Purification and Characterization of Bioactive Peptides -- 5.5 Conclusion -- References -- Chapter 6 Biosurfactant Production From Economical Sources -- 6.1 Introduction -- 6.2 Classification of Biosurfactants -- 6.2.1 Glycolipids -- 6.2.1.1 Rhamnolipids -- 6.2.1.2 Trehalolipids -- 6.2.1.3 Sophorolipids -- 6.2.2 Lipopeptides and Lipoproteins -- 6.2.3 Phospholipids, Fatty Acid, and Neutral Lipids -- 6.2.4 Polymeric Biosurfactants -- 6.2.5 Particulate Biosurfactants -- 6.3 Biosurfactant Production -- 6.4 Factors Influencing Biosurfactant Production -- 6.4.1 Carbon Supply -- 6.4.2 Nitrogen Source -- 6.4.3 C/N Ratio -- 6.4.4 Influence of Physical Variables -- 6.4.4.1 pH -- 6.4.4.2 Temperature. 327 $a6.4.4.3 Aeration and Agitation Rate -- 6.4.4.4 Quantity of Inoculum -- 6.5 Conventional Substrates for Biosurfactant Production -- 6.6 Food Industry Byproducts for Biosurfactant Production -- 6.7 Agro-Industrial Waste Utilization in Biosurfactant Production -- 6.8 Economic Feasibility -- 6.8.1 Production Cost of Biosurfactant -- 6.8.2 Strategies for Feasible Commercial Biosurfactant Production -- 6.9 Applications of Biosurfactants -- 6.10 Conclusion -- References -- Chapter 7 Biofortification of Food Using Fermentation -- 7.1 Introduction -- 7.2 The Need for Biofortification -- 7.3 Why Biofortification via Fermentation? -- 7.4 Nutrients that Have Been Fortified Using Fermentation Approaches -- 7.4.1 Folate -- 7.4.2 Riboflavin and Other Nutrients -- 7.5 Application of Biofortification -- 7.6 Comparative Advantages -- 7.7 Bioavailability and Efficacy of Micronutrients Provided by Fermented Biofortified Foods -- 7.8 Conclusion -- References -- Chapter 8 Consumers and Health Claims of Nutraceuticals -- 8.1 Introduction -- 8.2 Consumers for Nutraceuticals -- 8.3 Factors Influencing Consumer's Food Preferences -- 8.4 Health Claims and Their Substantiation -- 8.5 International Regulatory Framework for Nutraceuticals' Health Claims -- 8.5.1 Japanese Regulatory System -- 8.5.2 American Regulatory System -- 8.5.3 European Regulatory System -- 8.5.4 Canadian Regulatory System -- 8.5.5 Australian and New Zealand Regulatory System -- 8.5.6 Chinese Regulatory System -- 8.5.7 Indian Regulatory System -- 8.6 Clinical and In Vitro Studies Validating Nutraceuticals' Health Claims -- 8.6.1 Skin Health -- 8.6.2 Cardiovascular Diseases -- 8.6.3 Cancer Therapy -- 8.6.4 Antiviral Effect -- 8.6.5 Other Health Benefits -- 8.7 Conclusion -- References -- Chapter 9 Application of Bacteriocin in Wine -- 9.1 Introduction -- 9.2 Bacteriocin -- 9.2.1 Bacteriocins' Classes. 327 $a9.2.2 Bacteriocin Production -- 9.2.3 Bacteriocin Extraction -- 9.2.4 Bacteriocin Screening -- 9.2.5 Bacteriocin Purification -- 9.2.6 Bacteriocin Mode of Action -- 9.3 Immobilized Cells Against Free Cell of LAB-Producing Bacteriocin -- 9.4 Potential Application of Bacteriocin in Food Industry -- 9.5 Bacteriocin in Wine -- 9.5.1 Bacteriocin Production Under Winery Conditions -- 9.5.2 The Most Common LAB Bacteriocin in Wine -- 9.5.2.1 Nisin -- 9.5.2.2 Pediocin -- 9.5.2.3 Plantaricin -- 9.5.3 Corroborative Effect of Bacteriocin and Sulfur Dioxide in Wine -- 9.6 Factor Affecting Activity of Bacteriocin -- 9.7 Safety and Regulatory Consideration of Bacteriocin -- 9.8 Conclusion -- References -- Chapter 10 Current Trends in Fermentative Nutraceuticals -- 10.1 Introduction -- 10.2 Phytochemicals -- 10.3 Polyphenolic Compounds -- 10.4 Alkaloids -- 10.5 Terpenoids -- 10.6 Prebiotics -- 10.7 Polysaccharides -- 10.8 Poly Amino Acids -- 10.9 Polyunsaturated Fatty Acids -- 10.10 Conclusions -- References -- Chapter 11 Bioactive Compounds in Fermented Seafood and Their Health Benefits -- 11.1 Introduction -- 11.2 Marine-Based Bioactive Compounds From Fermentation Process and Their Health Benefits -- 11.2.1 Fatty Acid -- 11.2.2 Peptides -- 11.2.3 Bacteriocin -- 11.2.4 Polysaccharides -- 11.2.5 Phenolic Compounds -- 11.2.6 Organic Acid -- 11.2.7 Carotenoids -- 11.3 Challenges and Future Aspects -- References -- Index -- Also of Interest -- EULA. 330 $aThis book series, 'Fermentative Scope: Bioprocessing in Food Science,' provides an extensive exploration of food science, focusing on bioprocessing technologies such as microbial fermentation, enzyme technology, genetic engineering, and bioreactor design. It examines the principles, applications, and constraints of advanced bioprocessing methods, emphasizing their role in sustainable food production amidst global challenges like population growth and climate change. The series aims to compile and disseminate research for postgraduate students, researchers, and industry professionals, addressing topics such as bioactive compounds, solid-state fermentation, food safety, and the enhancement of nutritional and functional properties of food. The content is structured to meet academic and industry needs, encouraging informed decision-making in food technology adoption and development.$7Generated by AI. 606 $aFermentation$7Generated by AI 606 $aFood science$7Generated by AI 615 0$aFermentation 615 0$aFood science 676 $a572.429 700 $aSindhu$b Meena$01841985 701 $aPanghal$b Anil$01730357 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9911019138303321 996 $aFermentative Nutraceuticals$94421915 997 $aUNINA