LEADER 01018nam0-22003131i-450- 001 990000418740403321 005 20001010 035 $a000041874 035 $aFED01000041874 035 $a(Aleph)000041874FED01 035 $a000041874 100 $a20001010d--------km-y0itay50------ba 101 0 $aita 105 $ay-------001yy 200 1 $aNuove applicazioni nella tecnica delle rappresentazioni grafiche$eprospettive esplose nell'edilizia$fMario Oreglia 210 $aTorino$cs.e.$d1960 215 $a8 p.$d30 cm 300 $aEstr. da: Vol. I dell'opera Forma urbana ed architettura nella Torino Barocca. UTET - Torino 1967. Donazione de Sivo 610 0 $aDisegno Architettonico 676 $a742 700 1$aOreglia,$bMario$023668 801 0$aIT$bUNINA$gRICA$2UNIMARC 901 $aBK 912 $a990000418740403321 952 $a08 G 81$b249 (AT)$fDINED 959 $aDINED 996 $aNuove applicazioni nella tecnica delle rappresentazioni grafiche$9326948 997 $aUNINA DB $aING01 LEADER 05185nam 2200601 a 450 001 9911018972903321 005 20200520144314.0 010 $a1-118-61998-6 010 $a1-299-31540-2 010 $a1-118-61973-0 035 $a(CKB)2560000000100621 035 $a(EBL)1143622 035 $a(OCoLC)830161653 035 $a(SSID)ssj0000833563 035 $a(PQKBManifestationID)11418308 035 $a(PQKBTitleCode)TC0000833563 035 $a(PQKBWorkID)10936467 035 $a(PQKB)10852088 035 $a(MiAaPQ)EBC1143622 035 $a(PPN)189848480 035 $a(EXLCZ)992560000000100621 100 $a20100510d2010 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aLinear systems /$fHenri Bourles 210 $aLondon, U.K. $cISTE ;$aHoboken, N.J. $cWiley$d2010 215 $a1 online resource (594 p.) 225 1 $aControl systems, robotics and manufacturing series 300 $aAdapated and updated from Systemes lineaires published 2006 in France by Hermes Science/Lavoisier. 311 $a1-84821-162-7 320 $aIncludes bibliographical references and index. 327 $aCover; Title Page; Copyright Page; Table of Contents; 7.2.1. Invariant zeros and transmission zeros; 12.3.1. Fourier transforms of distributions; Preface; Chapter 1. Physical Models; 1.1.Electric system; 1.1.1.Mesh rule; 1.1.2. Nodal rule; 1.2. Mechanical system; 1.2.1. Fundamental principle of dynamics; 1.2.2. Lagrangian formalism; 1.3. Electromechanical system; 1.4.Thermal hydraulic system; 1.4.1. Balance in volume; 1.4.2. Exit rate: Torricelli's formula; 1.4.3. Energy balance; 1.5.Exercises; Chapter 2. Systems Theory (I); 2.1. Introductory example 327 $a2.2. General representation and properties2.2.1.Variables; 2.2.2.Equations; 2.2.3.Time-invariant systems; 2.2.4. Linear systems; 2.2.5. Linear time-invariant systems; 2.2.6. Equilibrium point; 2.2.7. Linearization around an equilibrium point; 2.3. Control systems; 2.3.1. Inputs; 2.3.2. Outputs; 2.3.3. Latent variables; 2.3.4. Classification of systems; 2.3.5. Rosenbrock representation; 2.3.6. State-space representation; 2.3.7. Poles and order of a system; 2.3.8. Free response and behavior; 2.4. Transfer matrix; 2.4.1. Laplace transforms; 2.4.2. Transfer matrix: definition; 2.4.3. Examples 327 $a2.4.4. Transmission poles and zeros2.4.5. *MacMillan poles and zeros; 2.4.6. Minimal systems; 2.4.7. Transmission poles and zeros at infinity; 2.5. Responses of a control system; 2.5.1. Input-output operator; 2.5.2. Impulse and step responses; 2.5.3. Proper, biproper and strictly proper systems; 2.5.4. Frequency response; 2.6. Diagrams and their algebra; 2.6.1. Diagram of a control system; 2.6.2. General algebra of diagrams; 2.6.3. Specificity of linear systems; 2.7. Exercises; Chapter 3. Open-Loop Systems; 3.1. Stability and static gain; 3.1.1. Stability; 3.1.2. Static gain 327 $a3.2. First-order systems3.2.1.Transfer function; 3.2.2. Time domain responses; 3.2.3. Frequency response; 3.2.4. Bode plot; 3.2.5. Case of an unstable first-order system; 3.3. Second-order systems; 3.3.1.Transfer function; 3.3.2. Time domain responses; 3.3.3. Bode plot; 3.4. Systems of any order; 3.4.1. Stability; 3.4.2. Decomposition of the transfer function; 3.4.3. Asymptotic Bode plot; 3.4.4. Amplitude/phase relation; 3.5. Time-delay systems; 3.5.1. Left formtime-delay systems; 3.5.2. Transfer function; 3.5.3. Bode plot; 3.5.4. Example: first-order time-delay system 327 $a3.5.5. Approximations of a time-delay system3.6. Exercises; Chapter 4. Closed-Loop Systems; 4.1. Closed-loop stability; 4.1.1. Standard feedback system; 4.1.2. Closed-loop equations; 4.1.3. Stability of a closed-loop system; 4.1.4. Nyquist criterion; 4.1.5. Small gain theorem; 4.2. Robustness and performance; 4.2.1. Generalities; 4.2.2. Robustness margins; 4.2.3. Use of the Nichols chart; 4.2.4. Robustness against neglected dynamics; 4.2.5. Performance; 4.2.6. Sensitivity to measurement noise; 4.2.7. Loopshaping of L(s); 4.2.8. Degradation of robustness/performance trade-off 327 $a4.2.9. *Extension to the MIMOcase 330 $aLinear systems have all the necessary elements (modeling, identification, analysis and control), from an educational point of view, to help us understand the discipline of automation and apply it efficiently. This book is progressive and organized in such a way that different levels of readership are possible. It is addressed both to beginners and those with a good understanding of automation wishing to enhance their knowledge on the subject. The theory is rigorously developed and illustrated by numerous examples which can be reproduced with the help of appropriate computation software. 60 exe 410 0$aControl systems, robotics and manufacturing series. 606 $aLinear systems 615 0$aLinear systems. 676 $a003/.74 700 $aBourles$b Henri$0914595 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9911018972903321 996 $aLinear systems$94416872 997 $aUNINA