LEADER 11603nam 22006013 450 001 9911018954703321 005 20250417174614.0 010 $a9781119508342 010 $a1119508347 010 $a9781119508366 010 $a1119508363 010 $a9781119508373 010 $a1119508371 035 $a(MiAaPQ)EBC31246921 035 $a(Au-PeEL)EBL31246921 035 $a(CKB)31320479800041 035 $a(Exl-AI)31246921 035 $a(Perlego)4384930 035 $a(OCoLC)1428901692 035 $a(EXLCZ)9931320479800041 100 $a20240405d2024 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aNonlinear Optical Technology $eFrom the Beginning 205 $a1st ed. 210 1$aNewark :$cJohn Wiley & Sons, Incorporated,$d2024. 210 4$dİ2024. 215 $a1 online resource (513 pages) 311 08$a9781119508359 311 08$a1119508355 327 $aCover -- Title Page -- Copyright Page -- Dedication Page -- Contents -- Preface -- Acronyms -- Introduction: Why Nonlinear Optics? -- Summary 1: What is Nonlinear Optics Technology? -- Introduction -- The Nonlinear Optics Approach -- S4: Nonlinear Scattering and Absorption -- Appendices: Linear Optics -- Appendix A: Beams of Light in Transparent Optical Materials -- Appendix B: Optical Material Interacting with Monochromatic Light -- Appendix C: Understanding Resonators -- Appendix D: Waveguides to Avoid Diffraction -- Summary 2: Second-Order Nonlinearity -- Chapter 1: Second Harmonic Generation -- Chapter 2: Efficient Second-Harmonic Generation -- Mismatched Phases -- Applications for Efficient SHG -- Optical Rectification and Terahertz Radiation -- Chapter 3: Techniques for SHG Phase Matching -- Index Matching with Anisotropic Crystals -- Quasi-Phase Matching -- Gaussian Beam Diffraction -- Resonant Cavities -- Chapter 4: Optical Parametric Amplifier/Oscillator -- Optical Parametric Oscillators -- OPO Applications -- Quantum Optics: Entangling and Squeezing -- Summary 3: Third-Order Nonlinearity -- Chapter 5: Third-Order Nonlinearity: High Harmonics and Femtosecond Technology -- Impact of Ultra-Short Pulses (USPs) -- Applications for THG -- Gases for THG -- HHG (High Harmonic Generation) -- Impact of Mode-Locked Lasers -- Ultra-Short Pulse (USP) Applications -- Technology for Sensing Femtosecond Technology -- Optical Parametric Chirped-Pulse Amplifier -- Chapter 6: Impact of Nonlinear Index on Coherent Pulses -- Fiber Optic Communications: Nonlinear Time-Delay -- Time-Varying Intensity Impacts Pulse Shapes -- Solitons -- Intensity-Dependent Phase -- Self-Phase-Modulation -- Frequency Shifts from SPM -- Ultra-High Frequency Telecom Systems -- Quantum Non-demolition -- Chapter 7: Spatial Impacts of Nonlinear Index. 327 $aApplications: All-Optical Switching -- Chapter 8: Four- and Two-Wave-Mixing -- Nonlinear Interference: Why Is this Interesting? -- Four-Wave-Mixing -- Distributed Retroreflection -- FWM for Optic Parametric Amplifiers -- Four-Wave Mixing as Four-Photon Scattering -- Summary 4: Nonlinear Scattering and Loss -- Introduction -- Chapter 9: Stimulated Raman Scattering -- Chapter 10: Stimulated Brillouin Scattering -- Chapter 11: Nonlinear Absorption -- Two-Photon Absorption -- Saturable Absorption -- Part I Technical Chapters on Second-Order Nonlinearity -- Chapter 1 Second Harmonic Generation -- 1.1 Introduction -- 1.2 Second Harmonic Generation at the Beginning -- 1.3 How Do We Begin? -- 1.3.1 Coherent Light -- 1.3.2 Linear Interaction Between Light and Materials -- 1.3.3 Dielectric Susceptibility -- 1.3.4 Orders of Optical Nonlinearity -- 1.4 Approaches to Second Harmonic Generation -- 1.4.1 Atomic Physics Assumed Here -- 1.4.2 Approach to NLO Learned from C. H. Townes -- 1.4.3 Modeling Material's Linear Response to Light -- 1.4.4 Dielectric Polarization Density -- 1.4.5 Impact of Coherent Light -- 1.4.6 Nonlinear Material Response -- 1.5 Electromagnetic Response to Dielectric -- 1.5.1 Polarization Wave: Second Harmonic -- 1.5.2 Second Harmonic Optical Energy Density -- 1.5.3 Numerical Analysis -- 1.6 Nonlinear Static Field -- 1.7 Second Harmonic Has No Inversion Symmetry -- 1.7.1 Why Does SHG Require Inversion Asymmetry? -- 1.7.2 Why Do So Few Materials Exhibit SHG? -- 1.8 Photon Picture of SHG -- 1.9 Nonlinear Optics (a Look Ahead) -- 1.10 Applications: SHG at Interfaces -- 1.10.1 Imaging Surface SHG -- 1.10.2 Confocal Laser Scanning Microscopy -- 1.10.3 Spatially Inhomogeneous Examples -- 1.10.4 SHG Microscopy of Collagen in Tissue Structures -- 1.10.5 Surface SHG: Conformation Examples -- 1.10.6 Plasmonic Surface SHG for Single-Molecule Detection. 327 $a1.10.7 Electric-Field-Induced Second Harmonic -- 1.11 Discussion -- Chapter 2 Generating Second Harmonic Efficiently -- 2.1 Introduction -- 2.1.1 Early Experimental Result -- 2.2 Traveling Waves for SHG -- 2.2.1 Nonlinearly Oscillating Dielectric Polarization -- 2.2.2 Phases in Coherent Electric Fields -- 2.2.3 Solving the Nonlinear Wave Equation -- 2.2.4 Phase-Matched Second-Harmonic Wave Equation` -- 2.2.5 Phase-Matched SH Field Growth vs. Distance -- 2.3 Phase-Matched Growth of Intensity -- 2.3.1 Squaring the Field to Find Intensity -- 2.3.2 SHG Discussion -- 2.3.3 SHG Coupling Coefficient -- 2.3.4 SH Intensity Efficiency Growth per Wavelength -- 2.3.5 Estimate of First SHG Experimental Results -- 2.4 SHG from Crystal Under Refractive-Index Mismatch -- 2.4.1 Growth of SH under Mismatched Phases -- 2.4.2 Coherence Length -- 2.4.3 Plot of Phase-Mismatch Function -- 2.4.4 Numerical Estimate of Phase Mismatch -- 2.4.5 Efficiency Analysis -- 2.5 When SH Power Diminishes Due to Phase Mismatch, Where Does It Go? -- 2.5.1 How Does the NL System Know What the SH Phase Is? -- 2.5.2 Conclusion: SHG Spatial Dependence Within Crystal -- 2.6 Phase-Matched Depleted Pump -- 2.7 SH Intensity with Phase Mismatch and Depleted Pump -- 2.7.1 Evaluating Limits to Index Mismatch -- 2.8 Applications of SHG -- 2.8.1 Efficiently Providing Coherent Light in the Green -- 2.8.2 LIDAR: Light Detection and Ranging -- 2.8.3 Pulsed Lasers and SHG -- 2.8.4 Discussion about Pulses -- 2.9 Sum and Difference Frequency Generation -- 2.9.1 Proving Sum-Frequency Generation -- 2.9.2 Difference Frequency Generation -- 2.10 Optical Field Rectification -- 2.10.1 Pulsed Amplitudes Generate New Frequencies -- 2.10.2 Terahertz Generation Through ?2 -- 2.10.3 THz Scientific Experimentation Techniques -- 2.10.4 Practical Applications of THz Waves -- 2.11 Review. 327 $aChapter 3 Extending Coherence Lengths -- 3.1 Introduction -- 3.1.1 Understanding Phase Matching -- 3.1.2 Phases and Optical Waves -- 3.1.3 How to Phase Match -- 3.2 How Important Is Matching Phases? -- 3.2.1 Phase-Matching Coherence Length -- 3.2.2 Refractive Index Dispersion -- 3.2.3 Compare SH Intensity: Phase Match vs. Mismatch -- 3.2.4 Define Phase Mismatch Coherence Length -- 3.3 Experimental Demonstration of SHG With/Without PM -- 3.3.1 Solutions: How to Phase Match -- 3.3.2 Possible Phase-Match Experimental Approaches -- 3.3.3 Phase-Match Requirements in Crystal Quartz -- 3.3.4 Anisotropic Crystals in SHG -- 3.3.5 Can Crystal Quartz Phase-Match? -- 3.4 Anisotropic Crystals -- 3.4.1 Light Propagation Through Crystals -- 3.4.2 Visualizing Uniaxial Crystal Geometry -- 3.4.3 Explain the First SHG Results in Crystal Quartz -- 3.5 Anisotropic Crystals for SHG Phase Matching -- 3.5.1 Determining Index of Refraction in Anisotropic Crystals -- 3.5.2 Propagation in Crystal at Variable Angle to Optic Axis -- 3.5.3 Calculating Refractive Index for Extraordinary Ray -- 3.5.4 Available Anisotropic Crystals for SHG -- 3.6 Quasi-Phase Matching -- 3.6.1 No Phase-Match: Power Oscillates -- 3.6.2 Calculate Peak SH Field -- 3.6.3 Thoughts About Quasi-Phase Matching -- 3.6.4 Can QPM Be Efficient? -- 3.6.5 QPM Intensity Compared to PM -- 3.7 Challenge of Alternating SHG Domains -- 3.7.1 Periodic Domain Reversal -- 3.8 Periodically-Poled Lithium Niobate (PPLN) -- 3.8.1 Some Advanced Materials with Promise -- 3.8.2 Applications for SHG in Waveguides -- 3.8.3 "Green Laser" Pointer from SHG -- 3.9 Gaussian Beam Diffraction -- 3.9.1 Limits to SHG from Beam Expansion -- 3.9.2 Gaussian Beam Characteristics -- 3.9.3 Distance Dependence of Gaussian Beam Parameters -- 3.9.4 What is the Best Design for SH in the Presence of Diffraction?. 327 $a3.10 Resonators for Enhanced SHG: Fabry-Perot Interferometer -- 3.10.1 Optical Cavity -- 3.10.2 Fabry-Perot Interferometer -- 3.10.3 Summary Equations: FPI on Resonance -- 3.10.4 Laser-Cavity Electric-Field Enhancement -- 3.11 Cavity Enhancement in Green Laser Pointer -- Chapter 4 Optical Parametric Amplification -- 4.1 Optical Parametric Amplifier: Tunable Source of Coherent Light -- 4.1.1 Nonlinear Interactions Between Photons and Atoms/Molecules -- 4.1.2 Basic Concept of Optical Parametric Interactions -- 4.1.3 OPA Historical Origins in Electrical Engineering -- 4.1.4 Parametric Processes for Practical Signal Processing -- 4.1.5 Nonlinear Interactions Between Materials and Photons -- 4.1.6 Optical Parametric Amplifiers from Light Scattering Perspective -- 4.2 Optical Parametric Amplifiers: Engineering Perspective -- 4.2.1 Understanding Optical Parametric Amplification -- 4.2.2 Relevant Frequencies -- 4.2.3 Stimulated Emission as Alternate Amplifier -- 4.2.4 Laser Amplifiers -- 4.3 Amplification by Parametric Nonlinearities -- 4.3.1 Idler Wave in Amplifiers -- 4.3.2 Mathematical Analysis of OPA -- 4.3.3 Uncoupling the Differential Equations -- 4.3.4 Intensity Growth for Different Frequencies -- 4.3.5 OPA Gain -- 4.4 OPA as Reverse of Difference Frequency Generation -- 4.5 Understanding Parametric Oscillators -- 4.5.1 Solve for OPO Signal and Idler Fields in FPI Cavity -- 4.5.2 sinh(gz) and cosh(gz) Trial Solutions for Cavity Electric Field -- 4.5.3 FPI Pump Intensity Threshold for OPO -- 4.5.4 Frequency Selection for OPO -- 4.6 Operating an OPO System -- 4.6.1 The First OPO -- 4.6.2 Evaluation of Experimental Results -- 4.6.3 Some Reported Design Features -- 4.7 OPO Is OPA in Optical Cavity -- 4.7.1 Optical Parametric Oscillator: Theoretical Analysis -- 4.7.2 Idler Wave Stays in Sync. 327 $a4.7.3 Review: Growth of Signal and Idler in an OPA, No Depletion. 330 $aThis book explores the field of nonlinear optical technology, tracing its development and applications. The author, Elsa M. Garmire, a noted figure in the field, delves into key concepts such as second-order and third-order nonlinearity, second harmonic generation, and optical parametric processes. The work also covers advanced topics like high harmonic generation, ultra-short pulse applications, and nonlinear scattering phenomena. The book serves as a comprehensive resource for understanding the fundamental principles and technological advancements in nonlinear optics. It is aimed at students, researchers, and professionals in the fields of optical engineering and photonics, providing both theoretical insights and practical applications.$7Generated by AI. 606 $aNonlinear optics$7Generated by AI 606 $aOptical engineering$7Generated by AI 615 0$aNonlinear optics 615 0$aOptical engineering 676 $a621.36/94 700 $aGarmire$b Elsa M$01842157 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9911018954703321 996 $aNonlinear Optical Technology$94422148 997 $aUNINA