LEADER 01546nam 22004093 450 001 9911018856003321 005 20250705060239.0 010 $a0-7844-8607-7 010 $a0-7844-8606-9 035 $a(CKB)39217205600041 035 $a(MiAaPQ)EBC32189692 035 $a(Au-PeEL)EBL32189692 035 $a(OCoLC)1526860297 035 $a(EXLCZ)9939217205600041 100 $a20250705d2025 uy 0 101 0 $aeng 135 $aur||||||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aScouring at Bridge Piers Using Artificial Intelligence Models $eImplementation and Prediction 205 $a1st ed. 210 1$aReston :$cAmerican Society of Civil Engineers,$d2025. 210 4$dİ2025. 215 $a1 online resource (351 pages) 225 1 $aASCE Press Series 311 08$a0-7844-1633-8 330 $aAuthor Mohammad Najafzadeh evaluates the effectiveness of four AI models--Gene-Expression Programming (GEP), Evolutionary Polynomial Regression (EPR), Model Tree (MT), and Multivariate Adaptive Regression Spline (MARS)--in predicting local scour depth at bridge piers, emphasizing their physical consistency and interpretability compared to traditional methods. 410 0$aASCE Press Series 700 $aNajafzadeh$b Mohammad$01827876 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9911018856003321 996 $aScouring at Bridge Piers Using Artificial Intelligence Models$94422384 997 $aUNINA