LEADER 10134nam 22006133 450 001 9911018798803321 005 20240831060209.0 010 $a9781119699316 010 $a1119699312 010 $a9781119699323 010 $a1119699320 010 $a9781119699224 010 $a1119699223 035 $a(CKB)34342958400041 035 $a(MiAaPQ)EBC31622274 035 $a(Au-PeEL)EBL31622274 035 $a(Exl-AI)31622274 035 $a(Perlego)4532853 035 $a(EXLCZ)9934342958400041 100 $a20240831d2024 uy 0 101 0 $aeng 135 $aur||||||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aElectromagnetic Wave Absorbing Materials $eFundamentals and Applications 205 $a1st ed. 210 1$aNewark :$cJohn Wiley & Sons, Incorporated,$d2024. 210 4$d©2024. 215 $a1 online resource (269 pages) 225 1 $aWiley Series in Materials for Electronic and Optoelectronic Applications Series 311 08$a9781119699347 311 08$a1119699347 327 $aCover -- Title Page -- Copyright Page -- Contents -- List of Contributors -- Overview of the Work -- Description -- Key Features -- Acknowledgments -- 1 Metal-Organic Framework-Based Electromagnetic Wave Absorption Materials -- 1.1 Brief Introduction to Metal-Organic Frameworks -- 1.2 Preparation Method of MOF Materials -- 1.2.1 Solvothermal Method -- 1.2.2 Microwave-Assisted Synthesis Method -- 1.2.3 Electrochemical Synthesis Method -- 1.2.4 Ultrasonic Method -- 1.2.5 Mechanochemistry Method -- 1.2.6 Steam-Assisted Conversion Method -- 1.2.7 Fluid Chemistry Method -- 1.3 MOF-Derived EMW Absorption Materials -- 1.3.1 Monometallic MOF-Derived Absorption Materials -- 1.3.2 Multi-metal MOF-Derived Absorption Materials -- 1.3.3 MOF-Carbon Composite Absorption Materials -- 1.3.4 MOF-MXene Composite Absorption Materials -- 1.3.5 MOF-Conductive Polymer Composite Absorption Materials -- 1.4 Summarize and Prospect -- References -- 2 2D MXenes for Electromagnetic Wave Absorption -- 2.1 Introduction to MXenes -- 2.2 Preparation Method of MXenes -- 2.2.1 Top-Down Strategy -- 2.2.1.1 HF Etching -- 2.2.1.2 In Situ HF Etching -- 2.2.1.3 Alkaline Solution Chemical Etching -- 2.2.1.4 Electrochemical Etching -- 2.2.1.5 Molten Salt Etching -- 2.2.2 Bottom-Up Strategies -- 2.2.2.1 Chemical Vapor Deposition -- 2.3 The Properties of MXenes -- 2.3.1 Morphologies and Surface Chemistries -- 2.3.2 Mechanical Properties -- 2.3.3 Electronic, Transport, and Band Gap Properties -- 2.3.4 Thermal Stability Properties -- 2.4 Electromagnetic Wave Absorption Performance of Pure MXenes -- 2.4.1 Content -- 2.4.2 Functional Groups and Defects -- 2.4.3 Size -- 2.4.4 Interlayer Spacing -- 2.4.5 Doping -- 2.4.6 Self-Transformation -- 2.5 Classification of MXenes in EMW Absorbing Materials -- 2.5.1 Component Optimization -- 2.5.1.1 Dielectric Materials -- 2.5.1.2 Magnetism. 327 $a2.5.1.3 Multiple Loss Materials -- 2.5.2 Structural Regulation -- 2.5.2.1 3D Microsphere -- 2.5.2.2 Fiber -- 2.5.2.3 Sandwich Structure -- 2.5.2.4 Hierarchical Structure -- 2.6 The Application Prospects of MXenes in EMW-Absorbing Materials -- References -- 3 High-Entropy Electromagnetic Wave Absorption Materials -- 3.1 The Concept and Features of High-Entropy Materials -- 3.1.1 The Definition of High-Entropy Materials -- 3.1.2 Broaden Elemental Combination and Microstructure -- 3.1.3 Dialectical View of Single-Phase Solid Solution Properties -- 3.1.4 The Theoretical Approach of Phase Selection in HEM -- 3.1.5 Four Core Effects of HEM -- 3.1.5.1 "High-Entropy" Effect -- 3.1.5.2 "Lattice Distortion" Effect -- 3.1.5.3 "Sluggish Diffusion" Effect -- 3.1.5.4 "Cocktail" Effect -- 3.2 The Synthesis Approach and Advanced Characterization of HEM -- 3.2.1 HEM Synthesis -- 3.2.1.1 Traditional Template Sintering Method -- 3.2.1.2 High-Temperature "Thermal Shock" Method -- 3.2.1.3 HEM Synthesis Strategy Under Mild Conditions -- 3.2.2 Advanced Characterization of HEM -- 3.3 High-Entropy Electromagnetic Wave Absorption Materials -- 3.3.1 High-Entropy Alloy -- 3.3.2 High-Entropy Oxide -- 3.3.3 High-Entropy Sulfide -- 3.4 The Challenge and Prospects of HEM -- References -- 4 Novel Microscopic Electromagnetic Loss Mechanisms -- 4.1 Novel Dielectric Loss Mechanisms -- 4.1.1 Synergistic Effects of Selenium-Sulfur Co-Doping-Induced Dielectric Polarization -- 4.1.2 Synergistic Effects of Hybridization State-Induced Dielectric Polarization -- 4.1.3 Synergistic Effects of Twin Structure-Induced Dielectric Polarization -- 4.1.4 Synergistic Effects of 3D Orbitals Unpaired Electron-Induced Dielectric Polarization -- 4.1.5 Interpretation of Energy Band Theory in Dielectric Loss -- 4.1.6 Defect-Induced Polarization Loss in Multi-Shelled Spinel Hollow Spheres. 327 $a4.2 Novel Microscopic Magnetic Loss Mechanisms -- 4.2.1 Magnetic Losses Induced by the Sequence Structure of Metallic Magnetic Chains -- 4.2.2 Multi-Model Sequence Structure for Improving Magnetic Loss -- 4.2.3 Enhanced Magnetic Coupling in Hollow Porous Carbon Three-Dimensional Magnetic Networks -- 4.2.4 Enhanced Magnetic Coupling Through Core-Shell Structural Design -- 4.3 Conclusion and Outlook -- References -- 5 Bridging Mechanisms Between Micro and Macro -- 5.1 Introduction to Micro Factors -- 5.1.1 Defects -- 5.1.2 Interfaces -- 5.1.3 Conductivity -- 5.1.4 Dipole -- 5.1.5 Saturation Magnetization -- 5.2 Regulation of Microscopic Attributes -- 5.2.1 Conventional Regulation -- 5.2.2 Physical External Fields Regulation -- 5.3 The Current State and Future Potential of Bridge Mechanism Between Micro and Macro Levels -- References -- 6 New Dielectric Physical Models for Electromagnetic Wave Absorption -- 6.1 Dielectric Microphysical Model -- 6.1.1 Dimension Distribution-Induced Interfacial Polarization Model -- 6.1.2 Three Types of Polarization Site Models -- 6.1.3 Electron Hopping and Electron Migrating Model -- 6.1.4 Three-Dimensional Conductive Network Model in Foam -- 6.1.5 Disordered Structure on the Atomic Scale-High-Entropy Models -- 6.2 Physical Models Related to Structural Design -- 6.2.1 Hierarchical Structural Models for Improved Impedance Matching -- 6.2.2 Core-Shell Structure Model -- 6.2.3 Double-Shell Structure Model -- 6.3 Intelligent Off/On Switchable Model -- 6.4 Conclusion and Outlook -- References -- 7 Integrated Foam-Type Electromagnetic Wave Absorption Materials -- 7.1 Carbon-Based Foam for EMW Absorption -- 7.1.1 Pure Carbon-Based Foams -- 7.1.2 Composite Foams Formed by Carbon Material -- 7.1.3 Composite Foams of Carbon Material and Magnetic Metal -- 7.1.4 Composite Foams of Carbon Material and Metal Oxides. 327 $a7.1.5 Composite Foams of Carbon Material and Ceramic Materials -- 7.1.6 Composite Foams of Carbon Material and MXene -- 7.2 Ferrite-Based Foam for EMW Absorption -- 7.3 SiC-Based Foam for EMW Absorption -- 7.4 Conductive Polymer Composites Foam for EMW Absorption -- References -- 8 Integral Gel Electromagnetic Wave Absorption Materials -- 8.1 Dielectric Liquid Medium Gel Electromagnetic Wave Absorption Materials -- 8.1.1 Progress in the Application and Research of Hydrogel EMW Absorption Materials -- 8.1.2 Progress in the Application and Research of Ionic and Organic Gel EMW Absorption Materials -- 8.1.3 Progress in the Research of Poly(Ionic Liquid) Gels -- 8.1.4 Perspectives on Dielectric Liquid Medium Gel EMW-Absorbing Materials -- 8.2 Dielectric Solid Medium Gel EMW Absorption Materials -- 8.2.1 Ceramic-Based Aerogel EMW Absorption Materials -- 8.2.1.1 Preparation Method of Ceramic-Based Aerogel EMW Absorption Materials -- 8.2.1.2 Ceramic-Based Aerogel EMW Absorber Applications and Research Progress -- 8.2.1.3 Polymer-Derived Ceramics Aerogels: EMW Absorber Applications and Research Progress -- 8.2.2 Metal-Based Aerogel EMW Absorption Materials -- 8.2.2.1 Preparation Method of Metal-Based Aerogel Absorption Materials -- 8.2.2.2 Metal Aerogels: EMW Absorber Applications and Research Progress -- 8.2.2.3 Composite Metal-Based Aerogels: EMW Absorber Applications and Research Progress -- 8.3 Prospect of Integral Gel EMW Absorption Materials -- References -- 9 Thin-Film Electromagnetic Wave Absorption Materials -- 9.1 Introduction -- 9.2 Film Electromagnetic Wave Absorption Materials -- 9.2.1 Carbon-Based Composite Films -- 9.2.2 Magnetic Metal Films -- 9.2.3 Thin-Film Materials Composite with Metal Oxides -- 9.2.4 MXene Films -- 9.2.5 Thin-Film Material Composite with Sulfide -- 9.3 The Conclusion and Prospect -- References -- Index -- EULA. 330 $aWave Absorbing Materials: Fundamentals and Applications provides a comprehensive overview of the development, properties, and applications of materials designed to absorb electromagnetic waves (EMW). Edited by Hongjing Wu, Jun Luo, and Meiyin Yang, the book explores various types of materials, including metal-organic frameworks (MOFs), MXenes, and high-entropy materials, which are integral to advancing electronic applications. The work delves into the preparation methods, structural properties, and performance metrics of these materials, highlighting their potential in enhancing the efficiency of electronic devices. The book is targeted towards researchers, engineers, and professionals in materials science and electronic engineering, offering in-depth theoretical and practical insights into the future of wave-absorbing technologies.$7Generated by AI. 410 0$aWiley Series in Materials for Electronic and Optoelectronic Applications Series 606 $aElectromagnetic waves$7Generated by AI 606 $aMaterials science$7Generated by AI 615 0$aElectromagnetic waves 615 0$aMaterials science 676 $a621.380284 700 $aWu$b Hongjing$01838807 701 $aLuo$b Jun$01605973 701 $aYang$b Meiyin$01838808 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9911018798803321 996 $aElectromagnetic Wave Absorbing Materials$94417880 997 $aUNINA LEADER 02691nam 22004815 450 001 9911021145203321 005 20250814130218.0 010 $a3-031-78139-2 024 7 $a10.1007/978-3-031-78139-1 035 $a(MiAaPQ)EBC32263312 035 $a(Au-PeEL)EBL32263312 035 $a(CKB)40336020900041 035 $a(DE-He213)978-3-031-78139-1 035 $a(EXLCZ)9940336020900041 100 $a20250814d2025 u| 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aApplications of Artificial Intelligence in Common Dermatological Diseases /$fedited by Esraa M. AlEdani, Howard I. Maibach 205 $a1st ed. 2025. 210 1$aCham :$cSpringer Nature Switzerland :$cImprint: Springer,$d2025. 215 $a1 online resource (133 pages) 225 1 $aUpdates in Clinical Dermatology,$x2523-8892 311 08$a3-031-78138-4 327 $aChapter One: The role of Artificial intelligence in dermatology -- Chapter Two: The role of Artificial intelligence in acne vulgaris -- Chapter Three: The role of Artificial intelligence in psoriasis -- Chapter Four: The role of Artificial intelligence in skin cancer -- Chapter Five: The role of Artificial intelligence in atopic dermatitis -- Chapter Six: The role of Artificial intelligence in predicting of skin sensitization substances -- Chapter Seven: The challenges and limitations of AI in dermatology. 330 $aThis book is first authoritative and comprehensive volume that dedicated to the role of artificial intelligence in common dermatological diseases. This book provides up to date and highly illustrated synopsis of the machine learning and convolutional neural network. Chapters address the effective usage of artificial intelligence in common dermatological diseases, and the role of learning machine in each disease, and how it helps in diagnosis and fasten the healing process. For example, It describes the usage of AI in early skin cancer detection, in acne vulgarism grading etc. This book is a valuable resource for dermatologists, medical students, and residents in dermatological specialty. 410 0$aUpdates in Clinical Dermatology,$x2523-8892 606 $aDermatology 606 $aDermatology 615 0$aDermatology. 615 14$aDermatology. 676 $a616.5 700 $aAlEdani$b Esraa M$01779159 701 $aMaibach$b Howard I$098218 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9911021145203321 996 $aApplications of Artificial Intelligence in Common Dermatological Diseases$94427133 997 $aUNINA