LEADER 02884nam 22006255 450 001 9911018650903321 005 20250806172318.0 010 $a9789819655151$b(electronic bk.) 010 $z9789819655144 024 7 $a10.1007/978-981-96-5515-1 035 $a(MiAaPQ)EBC32253834 035 $a(Au-PeEL)EBL32253834 035 $a(CKB)40093120100041 035 $a(OCoLC)1530783732 035 $a(DE-He213)978-981-96-5515-1 035 $a(EXLCZ)9940093120100041 100 $a20250806d2025 u| 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aTwo-Dimensional Constant and Product Polynomial Systems /$fby Albert C. J. Luo 205 $a1st ed. 2025. 210 1$aSingapore :$cSpringer Nature Singapore :$cImprint: Springer,$d2025. 215 $a1 online resource (144 pages) 311 08$aPrint version: Luo, Albert C. J. Two-Dimensional Constant and Product Polynomial Systems Singapore : Springer,c2025 9789819655144 327 $aConstant and Product Polynomial Systems -- Proof of Theorem 1.1 -- Singular flows bifurcaions and networks. 330 $aThis book is a monograph about 1-dimensional flow arrays and bifurcations in constant and product polynomial systems. The 1-dimensional flows and the corresponding bifurcation dynamics are discussed. The singular hyperbolic and hyperbolic-secant flows are presented, and the singular hyperbolic-to-hyperbolic-secant flows are discussed. The singular inflection source, sink and upper, and lower-saddle flows are presented. The corresponding appearing and switching bifurcations are presented for the hyperbolic and hyperbolic-secant networks, and singular flows networks. The corresponding theorem is presented, and the proof of theorem is given. Based on the singular flows, the corresponding hyperbolic and hyperbolic-secant flows are illustrated for a better understanding of the dynamics of constant and product polynomial systems. 606 $aSystem theory 606 $aAlgebraic fields 606 $aPolynomials 606 $aDynamics 606 $aDifferential equations 606 $aComplex Systems 606 $aField Theory and Polynomials 606 $aDynamical Systems 606 $aDifferential Equations 615 0$aSystem theory. 615 0$aAlgebraic fields. 615 0$aPolynomials. 615 0$aDynamics. 615 0$aDifferential equations. 615 14$aComplex Systems. 615 24$aField Theory and Polynomials. 615 24$aDynamical Systems. 615 24$aDifferential Equations. 676 $a003 700 $aLuo$b Albert C. J$0720985 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 912 $a9911018650903321 996 $aTwo-Dimensional Constant and Product Polynomial Systems$94415134 997 $aUNINA