LEADER 01448nam 2200373 450 001 9910219970403321 005 20200603163617.0 010 $a0-8330-9125-5 035 $a(CKB)3710000000443444 035 $a(WaSeSS)IndRDA00120413 035 $a(PPN)270272224 035 $a(EXLCZ)993710000000443444 100 $a20200603d2015 uy 0 101 0 $aeng 135 $aur||||||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aAdults newly exposed to the "Know the signs" campaign report greater gains in confidence to intervene with those who might be at risk for suicide that those unexposed to the campaign /$fRajeev Ramchand [and three others] 210 1$aSanta Monica, California :$cRAND Corporation,$d2015. 215 $a1 online resource (3 pages) 320 $aIncludes bibliographical references. 606 $aSuicidal behavior$xTreatment 606 $aSuicide$xPrevention$xEvaluation 615 0$aSuicidal behavior$xTreatment. 615 0$aSuicide$xPrevention$xEvaluation. 676 $a616.858445 700 $aRamchand$b Rajeev$01034200 801 0$bWaSeSS 801 1$bWaSeSS 906 $aBOOK 912 $a9910219970403321 996 $aAdults newly exposed to the "Know the signs" campaign report greater gains in confidence to intervene with those who might be at risk for suicide that those unexposed to the campaign$92974943 997 $aUNINA LEADER 02737nam 2200613 a 450 001 9910437873403321 005 20200520144314.0 010 $a1-283-90917-0 010 $a1-4419-9878-0 024 7 $a10.1007/978-1-4419-9878-1 035 $a(CKB)2670000000308607 035 $a(EBL)1081693 035 $a(OCoLC)819571506 035 $a(SSID)ssj0000811768 035 $a(PQKBManifestationID)11458917 035 $a(PQKBTitleCode)TC0000811768 035 $a(PQKBWorkID)10850599 035 $a(PQKB)10498465 035 $a(DE-He213)978-1-4419-9878-1 035 $a(MiAaPQ)EBC1081693 035 $a(PPN)168291568 035 $a(EXLCZ)992670000000308607 100 $a20121018d2013 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aRobust data mining /$fPetros Xanthopoulos, Panos M. Pardalos, Theodore B. Trafalis 205 $a1st ed. 2013. 210 $aNew York $cSpringer$d2013 215 $a1 online resource (66 p.) 225 0$aSpringerBriefs in optimization,$x2190-8354 300 $aDescription based upon print version of record. 311 $a1-4419-9877-2 320 $aIncludes bibliographical references. 327 $a1. Introduction -- 2. Least Squares Problems -- 3. Principal Component Analysis -- 4. Linear Discriminant Analysis -- 5. Support Vector Machines -- 6. Conclusion. 330 $aData uncertainty is a concept closely related with most real life applications that involve data collection and interpretation. Examples can be found in data acquired with biomedical instruments or other experimental techniques. Integration of robust optimization in the existing data mining techniques aim to create new algorithms resilient to error and noise. This work encapsulates all the latest applications of robust optimization in data mining. This brief contains an overview of the rapidly growing field of robust data mining research field and presents  the most well known machine learning algorithms, their robust counterpart formulations and algorithms for attacking these problems. This brief will appeal to theoreticians and data miners working in this field. 410 0$aSpringerBriefs in Optimization,$x2190-8354 606 $aData mining 606 $aRobust optimization 615 0$aData mining. 615 0$aRobust optimization. 676 $a006.312 700 $aXanthopoulos$b Petros$01064749 701 $aPardalos$b P. M$g(Panos M.),$f1954-$0318341 701 $aTrafalis$b Theodore B$01751789 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910437873403321 996 $aRobust data mining$94186904 997 $aUNINA LEADER 02851nam 22006615 450 001 9911016069403321 005 20250721130905.0 010 $a981-9669-57-X 024 7 $a10.1007/978-981-96-6957-8 035 $a(MiAaPQ)EBC32227082 035 $a(Au-PeEL)EBL32227082 035 $a(CKB)39694542000041 035 $a(DE-He213)978-981-96-6957-8 035 $a(EXLCZ)9939694542000041 100 $a20250721d2025 u| 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aNeural Information Processing $e31st International Conference, ICONIP 2024, Auckland, New Zealand, December 2?6, 2024, Proceedings, Part IV /$fedited by Mufti Mahmud, Maryam Doborjeh, Kevin Wong, Andrew Chi Sing Leung, Zohreh Doborjeh, M. Tanveer 205 $a1st ed. 2025. 210 1$aSingapore :$cSpringer Nature Singapore :$cImprint: Springer,$d2025. 215 $a1 online resource (685 pages) 225 1 $aCommunications in Computer and Information Science,$x1865-0937 ;$v2285 311 08$a981-9669-56-1 330 $aThe sixteen-volume set, CCIS 2282-2297, constitutes the refereed proceedings of the 31st International Conference on Neural Information Processing, ICONIP 2024, held in Auckland, New Zealand, in December 2024. The 472 regular papers presented in this proceedings set were carefully reviewed and selected from 1301 submissions. These papers primarily focus on the following areas: Theory and algorithms; Cognitive neurosciences; Human-centered computing; and Applications. 410 0$aCommunications in Computer and Information Science,$x1865-0937 ;$v2285 606 $aPattern recognition systems 606 $aData mining 606 $aMachine learning 606 $aSocial sciences$xData processing 606 $aAutomated Pattern Recognition 606 $aData Mining and Knowledge Discovery 606 $aMachine Learning 606 $aComputer Application in Social and Behavioral Sciences 615 0$aPattern recognition systems. 615 0$aData mining. 615 0$aMachine learning. 615 0$aSocial sciences$xData processing. 615 14$aAutomated Pattern Recognition. 615 24$aData Mining and Knowledge Discovery. 615 24$aMachine Learning. 615 24$aComputer Application in Social and Behavioral Sciences. 676 $a006.4 700 $aMahmud$b Mufti$01361230 701 $aDoborjeh$b Maryam$01827591 701 $aHuang$b Dejiang$01884775 701 $aLeung$b Andrew Chi Sing$01827593 701 $aDoborjeh$b Zohreh$01827594 701 $aTanveer$b M$01827595 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9911016069403321 996 $aNeural Information Processing$94519337 997 $aUNINA