LEADER 03388nam 22005055 450 001 9911015875103321 005 20250702130350.0 010 $a9783031922978$b(electronic bk.) 010 $z9783031922961 024 7 $a10.1007/978-3-031-92297-8 035 $a(MiAaPQ)EBC32189473 035 $a(Au-PeEL)EBL32189473 035 $a(CKB)39567924200041 035 $a(OCoLC)1526862497 035 $a(DE-He213)978-3-031-92297-8 035 $a(EXLCZ)9939567924200041 100 $a20250702d2025 u| 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aReal and Complex Geometry $eIn Honour of Paul Gauduchon /$fedited by Liviu Ornea 205 $a1st ed. 2025. 210 1$aCham :$cSpringer Nature Switzerland :$cImprint: Springer,$d2025. 215 $a1 online resource (634 pages) 311 08$aPrint version: Ornea, Liviu Real and Complex Geometry Cham : Springer,c2025 9783031922961 327 $aChapter 1. From Kähler Ricci Solitons to Calabi-Yau Kähler Cones -- Chapter 2. Projective Structures on Curves and Conformal Geometry -- Chapter 3. Constant Scalar Curvature Sasaki Metrics -- Chapter 4. A Mapping Tori Construction of Strong HKT and Generalized Hyperkähler Manifolds -- Chapter 5. Classification of Odd Generalized Einstein Metrics on 3-Dimensional Non-Unimodular Lie Groups -- Chapter 6. Cohomological Lifting of Multi-Toric Graphs -- Chapter 7. On Classification of Compact Complex Surfaces of Class VII -- Chapter 8. Conformal Vector Fields on LCP Manifolds -- Chapter 9. On Some Properties of Hopf Manifolds -- Chapter 10. Einstein Constants and Smooth Topology -- Chapter 11. The Lee?Gauduchon cone on complex manifolds -- Chapter 12. Bi-Hermitian and locally conformally Kähler surfaces -- Chapter 13. Revisiting 3-Sasakian and G2-structures -- Chapter 14. Kodaira Dimension of SU(m)-Structures.-Chapter 15. A Cheng-Yau Type Estimate for the Symplectic Calabi-Yau Equation. 330 $aThe book covers a wide area of hot subjects in real and complex differential geometry, such as conformal geometry, special holonomy, Sasakian geometry, Kähler and non-Kähler metrics, classification of compact complex surfaces, Einstein metrics, bi-Hermitian geometry, non-integrable almost complex structures, etc. All of these are rather close to Paul Gauduchon?s themes and influential results in the past fifty years. The reader will find fifteen papers ? a few surveys, but the majority containing new and exciting results. The book thus gives an idea of the present research interests of some of the best experts today in real and complex differential geometry including Vestislav Apostolov, Florin Belgun, Charles Boyer, Georges Dloussky, Anna Fino, Gueo Grantcharov, Claude LeBrun, Andrei Moroianu, Massimiliano Pontecorvo, Simon Salamon, Andrew Swann, Adriano Tomassini, Valentino Tosatti, and Misha Verbitsky. 606 $aGeometry 606 $aMathematics 606 $aGeometry 606 $aMathematics 615 0$aGeometry. 615 0$aMathematics. 615 14$aGeometry. 615 24$aMathematics. 676 $a516 700 $aOrnea$b Liviu$061834 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 912 $a9911015875103321 996 $aReal and Complex Geometry$94406498 997 $aUNINA