LEADER 01068nam0 22002771i 450 001 SUN0027515 005 20041111120000.0 010 $a88-348-7261-4 100 $a20041111d1997 |0itac50 ba 101 $aita 102 $aIT 105 $a|||| ||||| 200 1 $aEsercizi e complementi di matematica$fPasquale Luigi De Angelis 210 $aTorino$cGiappichelli$d1997 215 $a489 p.$d24 cm. 606 $aMatematica$xEsercizi$2FI$3SUNC008174 620 $dTorino$3SUNL000001 676 $a510.76$v21 700 1$aDe Angelis$b, Pasquale Luigi$3SUNV022879$079604 712 $aGiappichelli$3SUNV000045$4650 801 $aIT$bSOL$c20181109$gRICA 912 $aSUN0027515 950 $aBIBLIOTECA DEL DIPARTIMENTO DI ARCHITETTURA E DISEGNO INDUSTRIALE$d01 PREST IIIAa225 $e01 27372 995 $aBIBLIOTECA DEL DIPARTIMENTO DI ARCHITETTURA E DISEGNO INDUSTRIALE$bIT-CE0107$h27372$kPREST IIIAa225$op$qa 996 $aEsercizi e complementi di matematica$9410531 997 $aUNICAMPANIA LEADER 01398nam2 2200289 i 450 001 SUN0003599 005 20140625102954.164 010 $a88-14-08417-3 020 $aIT$b2000 12827 100 $a20020711d2000 |0itac50 ba 101 $aita 102 $aIT 105 $a|||| ||||| 200 1 $aˆ1: Le ‰innovazioni in tema di indagini e di udienza preliminare$fTeresa Bene ... [et al.]$ga cura di Luigi Kalb 210 $aMilano$cGiuffrè$d[2000] 215 $aXI, 562 p.$d24 cm. 410 1$1001SUN0060931$12001 $aˆLe ‰nuove leggi penali$v5$1210 $aMilano$cGiuffrè. 461 1$1001SUN0003522$12001 $aˆLe ‰recenti modifiche al Codice di procedura penale$ecommento alla Legge 16 dicembre 1999, n. 479 (c.d. Legge Carotti) integrata e corretta dal Decreto-legge 7 aprile 2000, n. 82 convertito, con modificazioni, in Legge 5 giugno 2000, n. 144$v1$1210 $aMilano$cGiuffrè$1215 $av.$d24 cm. 620 $dMilano$3SUNL000284 702 1$aKalb$b, Luigi$3SUNV001681 702 1$aBene$b, Teresa$3SUNV001724 712 $aGiuffrè$3SUNV001757$4650 801 $aIT$bSOL$c20181231$gRICA 912 $aSUN0003599 950 $aUFFICIO DI BIBLIOTECA DEL DIPARTIMENTO DI GIURISPRUDENZA$d00CONS XVII.D.1(1) $e00 17625 20020711 996 $aInnovazioni in tema di indagini e di udienza preliminare$9880207 997 $aUNICAMPANIA LEADER 03999nam 22005295 450 001 9911015868103321 005 20250716130256.0 010 $a1-4471-7550-6 024 7 $a10.1007/978-1-4471-7550-6 035 $a(MiAaPQ)EBC32212935 035 $a(Au-PeEL)EBL32212935 035 $a(CKB)39658931600041 035 $a(DE-He213)978-1-4471-7550-6 035 $a(OCoLC)1564374358 035 $a(EXLCZ)9939658931600041 100 $a20250716d2025 u| 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aMathematics for Computer Graphics /$fby John Vince 205 $a7th ed. 2025. 210 1$aLondon :$cSpringer London :$cImprint: Springer,$d2025. 215 $a1 online resource (667 pages) 225 1 $aUndergraduate Topics in Computer Science,$x2197-1781 311 08$a1-4471-7549-2 327 $aChapter 1.Introduction -- Chapter 2.Numbers -- Chapter 3.Algebra -- Chapter 4.Trigonometry -- Chapter 5.Coordinate Systems -- Chapter 6.Determinants -- Chapter 7.Vectors -- Chapter 8.Matrices -- Chapter 9.Complex Numbers -- Chapter 10.Geometric Transforms -- Chapter 11.Quaternion Algebra -- Chapter 12.Quaternions in Space -- Chapter 13.Interpolation -- Chapter 14.Curves and Patches -- Chapter 15.Analytic Geometry -- Chapter 16.Statistics -- Chapter 17.Barycentric Coordinates -- Chapter 18.Geometric Algebra -- Chapter 19.Calculus: Derivatives -- Chapter 20.Calculus: Integration -- Chapter 21.Fourier Series -- Chapter 22.Worked Examples. 330 $aJohn Vince explains a comprehensive range of mathematical techniques and problem-solving strategies associated with computer games, computer animation, special effects, virtual reality, CAD and other areas of computer graphics in this completely revised and expanded seventh edition. The first five chapters cover a general introduction, number sets, algebra, trigonometry and coordinate systems, which are employed in the following chapters on determinants, vectors, matrix algebra, complex numbers, geometric transforms, quaternion algebra, quaternions in space, interpolation, statistics, curves and patches, analytical geometry and barycentric coordinates. Following this, the reader is introduced to the relatively new subject of geometric algebra, followed by two chapters that introduce differential and integral calculus. Finally, there are chapters on Fourier analysis and Worked examples. Mathematics for Computer Graphics covers all of the key areas of the subject, including: ? Number sets ? Algebra ? Trigonometry ? Complex numbers ? Coordinate systems ? Determinants ? Vectors ? Quaternions ? Matrix algebra ? Geometric transforms ? Interpolation ? Curves and surfaces ? Analytic geometry ? Statistics ? Barycentric coordinates ? Geometric algebra ? Differential calculus ? Integral calculus ? Fourier analysis This seventh edition contains approximately 200 worked examples and over 350 colour illustrations, which are central to the author?s descriptive writing style. Mathematics for Computer Graphics provides a sound understanding of the mathematics required for computer graphics software and setting the scene for further reading of more advanced books and technical research papers. 410 0$aUndergraduate Topics in Computer Science,$x2197-1781 606 $aComputer graphics 606 $aComputer science$xMathematics 606 $aComputer Graphics 606 $aMathematical Applications in Computer Science 615 0$aComputer graphics. 615 0$aComputer science$xMathematics. 615 14$aComputer Graphics. 615 24$aMathematical Applications in Computer Science. 676 $a006.60151 700 $aVince$b John$0564065 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9911015868103321 996 $aMathematics for Computer Graphics$91961592 997 $aUNINA