LEADER 11105nam 22005653 450 001 9911009380503321 005 20240407090435.0 010 $a9780750343107 010 $a0750343109 035 $a(MiAaPQ)EBC31252926 035 $a(Au-PeEL)EBL31252926 035 $a(CKB)31356173200041 035 $a(Exl-AI)31252926 035 $a(OCoLC)1429723322 035 $a(EXLCZ)9931356173200041 100 $a20240407d2022 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aPrinted and Flexible Sensor Technology $eFabrication and Applications 205 $a1st ed. 210 1$aBristol :$cInstitute of Physics Publishing,$d2022. 210 4$dİ2021. 215 $a1 online resource (463 pages) 225 1 $aIOP Series in Sensors and Sensor Systems Series 311 08$a9780750334402 311 08$a0750334401 327 $aIntro -- Preface -- Editor biographies -- Subhas Chandra Mukhopadhyay -- Anindya Nag -- List of contributors -- Chapter 1 Printed and flexible sensors: a review of products and techniques -- 1.1 Introduction -- 1.2 Major manufacturers -- 1.2.1 Interlink Electronics -- 1.2.2 Tekscan -- 1.2.3 PST Sensors -- 1.2.4 GSI Technologies -- 1.2.5 KWJ Engineering -- 1.2.6 Peratech Holdco -- 1.2.7 ISORG -- 1.2.8 Fujifilm -- 1.2.9 Canatu -- 1.2.10 PolyIC -- 1.2.11 MC10 -- 1.2.12 QUAD Industries -- 1.2.13 Terabee -- 1.3 Materials for printed and flexible sensors -- 1.4 Printing technologies -- 1.4.1 Thick-film technology -- 1.4.2 Thin film technology -- 1.4.3 Inkjet printing -- 1.4.4 Photolithography -- 1.4.5 Masked photolithography -- 1.4.6 Maskless photolithography -- 1.4.7 Screen printing -- 1.4.8 Sputtering -- 1.4.9 Direct laser writing -- 1.4.10 Direct dry printing of carbon nanotubes -- 1.4.11 Hybrid printed electronics -- 1.5 Conclusion -- Acknowledgement -- References -- Chapter 2 Printed flexible sensors for academic research -- 2.1 Introduction -- 2.2 Printed flexible sensors -- 2.2.1 Biomedical applications of printed flexible sensors -- 2.2.2 Industrial applications of printed flexible sensors -- 2.2.3 Environmental applications of printed flexible sensors -- 2.3 Conclusion and future work -- Acknowledgement -- References -- Chapter 3 The fabrication of printed flexible sensors: challenges and possible outcomes -- 3.1 Introduction -- 3.2 The fabrication of printed flexible sensors -- 3.2.1 Screen printing -- 3.2.2 Inkjet printing -- 3.2.3 3D printing -- 3.2.4 Laser ablation -- 3.2.5 Gravure printing -- 3.3 Challenges of current sensors -- 3.4 Conclusion -- Acknowledgement -- References -- Chapter 4 Advances in printable devices for biomedical applications -- 4.1 Introduction -- 4.2 Printable biosensors. 327 $a4.3 The fabrication process of printable sensors -- 4.3.1 Screen printing -- 4.3.2 3D printing -- 4.3.3 Inkjet printing -- 4.4 The application of printable biosensors in biomedicine -- 4.4.1 Application as disposable biosensors for point-of-care testing -- 4.4.2 Application as wearable and implantable sensing devices -- 4.5 Parameters of printable biosensing devices -- 4.5.1 Analytical characteristics of printable biosensors -- 4.5.2 Other parameters of printable biosensors -- 4.6 Summary and future outlook -- References -- Chapter 5 Laser induced graphene: advances in electro-biochemical sensing and energy applications -- 5.1 Introduction -- 5.2 Properties of graphene -- 5.3 The commercial synthesis of graphene -- 5.3.1 Bottom up approach -- 5.3.2 Chemical vapor deposition -- 5.3.3 Mechanical exfoliation -- 5.3.4 Liquid-phase exfoliation -- 5.3.5 Electrochemical exfoliation -- 5.4 Laser induced graphene (LIG) fabrication -- 5.4.1 Procedure -- 5.4.2 An LIG based microfluidic device -- 5.4.3 Chemical modification of LIG (composites) -- 5.4.4 Different carbon sources for LIG -- 5.5 Electrochemical and biosensing applications of LIG -- 5.5.1 LIG in electrochemical, biosensor, and immunosensor applications -- 5.5.2 Application of LIG as a liquid, gas, and pressure sensor -- 5.6 LIG in energy applications -- 5.6.1 Application of LIG as a supercapacitor and microsupercapacitor -- 5.6.2 Application of LIG in fuel cells and nanogenerators (energy harvesting) -- 5.6.3 Future outlook and conclusion -- References -- Chapter 6 Fabrication and applications of wearable microfluidic devices for point-of-care sampling, manipulation, and testing -- 6.1 Introduction -- 6.1.1 Point-of-care testing (POCT) -- 6.1.2 Wearable devices -- 6.1.3 The microfluidic lab-on-a-chip technique -- 6.1.4 The significance of wearable microfluidics for biomedical applications. 327 $a6.2 Materials and fabrication of wearable microfluidic devices -- 6.2.1 Substrate materials and sensing materials -- 6.2.2 Fabrication techniques -- 6.2.3 Characteristics of the sensor -- 6.3 Theories and designs -- 6.3.1 Wearable microfluidic devices for physical properties -- 6.3.2 Wearable microfluidic devices for body fluids -- 6.4 Applications -- 6.4.1 Wearable microfluidic devices for sweat -- 6.4.2 Wearable microfluidic devices for urine -- 6.4.3 Wearable microfluidic devices for saliva -- 6.4.4 Wearable microfluidic devices for drug delivery -- 6.5 Conclusions and outlook -- Acknowledgments -- References -- Chapter 7 Single-walled carbon nanotubes for flexible and printed electronics -- 7.1 Introduction -- 7.2 The preparation of SWNT networks and thin films -- 7.2.1 Growth, alignment, and purification of CVD-grown SWNTs -- 7.2.2 Deposition, alignment, and purification of solution-processed SWNTs -- 7.3 Applications of sc-SWNTs -- 7.4 Applications of m-SWNTs -- 7.4.1 Pressure and strain sensors -- 7.4.2 Biological and chemical sensors -- 7.4.3 Supercapacitors and solar cells -- 7.5 Conclusion and future prospects -- References -- Chapter 8 Flexible strain sensors using graphene and its composites -- 8.1 Introduction -- 8.2 Graphene-metal nanocomposites for flexible sensor applications -- 8.3 Pulse measurement using PDMS encapsulated rGO-Pd sensors -- 8.4 Graphene capacitive strain sensor -- 8.5 Graphene based flex sensor on textile -- 8.6 Summary and conclusions -- References -- Chapter 9 Screen printed electrochemical and impedance biosensors -- 9.1 Introduction -- 9.2 A fundamental understanding of screen printing technology -- 9.2.1 Electrochemical biosensors based on screen printed electrodes -- 9.2.2 Advantages of electrochemical biosensors based on screen printed electrodes -- 9.2.3 Impedance biosensors based on screen printed electrodes. 327 $a9.2.4 The advantages of impedance biosensors based on screen printed electrodes -- 9.2.5 Challenges associated with real sample analysis using screen printed electrode based biosensors -- 9.2.6 Future outlook and concluding remarks -- References -- Chapter 10 Cellulose paper for flexible electronics: design and technology -- 10.1 Introduction -- 10.2 Cellulose paper structure and fabrication -- 10.3 A basic capillary structure design on cellulose paper -- 10.4 The application of designs and processing technologies on cellulose paper for flexible electronics -- 10.5 Conclusion -- References -- Chapter 11 Graphene-based implantable electrodes for neural recording/stimulation -- 11.1 Introduction -- 11.2 Synthesis of the graphene sheet -- 11.2.1 Mechanical exfoliation of graphite -- 11.2.2 Chemical vapor deposition (CVD) -- 11.2.3 Transfer methods of graphene onto the target surface -- 11.3 Graphene characterization methods -- 11.3.1 Raman spectroscopy -- 11.3.2 FESEM and SEM -- 11.3.3 TEM and HRTEM -- 11.3.4 UV-vis spectroscopy -- 11.3.5 AFM -- 11.4 The chemically modified graphene electrode -- 11.5 Graphene-based microelectrode arrays -- 11.5.1 Material requirements for neural implants -- 11.5.2 Graphene-based microelectrodes for stimulation -- 11.5.3 Graphene-based microelectrodes for neural recording -- 11.6 Conclusion -- Funding information -- References -- Chapter 12 Screen printed electrode based sensor for biological and chemical species detection -- 12.1 Introduction -- 12.2 Screen printed electrode (SPE) fabrication -- 12.3 Theory and operation of an electrochemical sensor -- 12.4 The SPE based biosensor -- 12.4.1 Immunosensor -- 12.4.2 Immunoassay -- 12.4.3 The construction of an amperometric type immunosensor -- 12.4.4 Chemosensor -- 12.4.5 Substrate and electrode materials -- 12.4.6 Electrode surface modification. 327 $a12.5 Screen printed electrode fabrication -- 12.6 Electrochemical signal measurement -- 12.6.1 A basic potentiostat circuit of electrochemical signal transduction -- 12.6.2 Cyclic voltammetry -- 12.6.3 Linear sweep voltammetry -- 12.6.4 Pulse voltammetry -- 12.6.5 Stripping voltammetry -- 12.7 Basic characteristics of some electrochemical signals -- 12.7.1 Electrochemical cell and signal -- 12.7.2 The electrochemical response of different SPEs -- 12.8 Conclusion -- Acknowledgement -- References -- Chapter 13 3D printed enzymatic biofuel cells incorporated with graphene and modified graphite bioelectrodes: a comparative study -- 13.1 Introduction -- 13.2 Experimental details -- 13.2.1 Materials, reagents, and supplies -- 13.2.2 Preparation of chemicals -- 13.2.3 Characterization and fabrication equipment -- 13.2.4 3D printed bioelectrode fabrication and preparation -- 13.2.5 Preparation of pencil graphite bioelectrodes -- 13.2.6 Design and fabrication of a 3D printed microchannel -- 13.2.7 Integration of 3DPG and PGE based 3D printed EBFCs -- 13.2.8 Electrochemical analysis -- 13.3 Results and discussion -- 13.3.1 Morphological analysis -- 13.3.2 Optimization of fuel concentration -- 13.3.3 Bioanode characterization -- 13.3.4 Effect of the scan rate -- 13.3.5 Biocathode characterization -- 13.3.6 Electrochemical impedance measurements -- 13.3.7 The effect of flow rate -- 13.3.8 Power performance of the biofuel cell -- 13.3.9 Stability study -- 13.4 Conclusions -- Acknowledgement -- References -- Chapter 14 Development, simulation and characterization of a novel incontinence sensor system using 2D-printing technology with conductive polymer PEDOT:PSS -- 14.1 Introduction -- 14.2 Material characterization for the FEM calculation -- 14.2.1 Relative permittivity -- 14.2.2 Electrical conductivity -- 14.3 Experimental models -- 14.3.1 Analytic model. 327 $a14.3.2 Simulation model. 330 $aThis book reviews and showcases the design, fabrication and implementation of printed and flexible sensors and their range of applications in biomedical, industrial, and environmental settings. 410 0$aIOP Series in Sensors and Sensor Systems Series 606 $aFlexible electronics$7Generated by AI 606 $aPrinted electronics$7Generated by AI 615 0$aFlexible electronics 615 0$aPrinted electronics 700 $aMukhopadhyay$b Subhas$0731870 701 $aNag$b Anindya$0999620 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9911009380503321 996 $aPrinted and Flexible Sensor Technology$94395645 997 $aUNINA LEADER 04414nam 22007695 450 001 9911015857803321 005 20250711141904.0 010 $a3-031-90387-0 024 7 $a10.1007/978-3-031-90387-8 035 $a(MiAaPQ)EBC32206008 035 $a(Au-PeEL)EBL32206008 035 $a(CKB)39625697500041 035 $a(DE-He213)978-3-031-90387-8 035 $a(OCoLC)1528359214 035 $a(EXLCZ)9939625697500041 100 $a20250711d2025 u| 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aEnvironmentally Friendly Smart Materials with Special Electrical and Magnetic Properties /$fby Ilya A. Verbenko, Ivan A. Parinov, Ekaterina V. Glazunova, Svetlana I. Dudkina, Konstantin P. Andryushin, Dmitry V. Volkov, Larisa A. Reznichenko 205 $a1st ed. 2025. 210 1$aCham :$cSpringer Nature Switzerland :$cImprint: Springer,$d2025. 215 $a1 online resource (315 pages) 225 1 $aEngineering Materials,$x1868-1212 311 08$a3-031-90386-2 327 $aCurrent State of Research in the Field of Environmentally Friendly Smart Materials, Technologies and Devices -- Regularities of the Change of Physical Properties of Solid Solutions Based on Sodium Niobate During Their Modification -- Regularities of Changes in Physical Properties of Oxides with Perovskite-Type Structure During Modification -- Structure, Grain Structure and Electrophysical Properties of Polycrystalline Solid Solutions of (Na, Li) NbO3 System -- Regularities of Changes in the Structure and Physical Properties of Solid Solutions Based on Alkali and Alkaline Earth Metal Niobates upon Heterovalention Substitution -- Thermal Frequency Behavior of Multi-element Compositions Based on Alkali Metal Niobates. 330 $aThis book presents a comprehensive exploration of the research and development of modern lead-free ferroelectric piezoceramic materials (FPCMs). Authored by Russian scientists from the Rostov Scientific School on Ferro-piezoelectricity, the book looks at the theoretical and experimental challenges associated with these environmentally friendly materials. It highlights the transition from traditional lead-containing materials to innovative lead-free alternatives, emphasizing their significance in various advanced fields such as biomedicine, information technology, robotics, and precision engineering. The book provides a detailed analysis of the methodologies employed for the preparation of FPCMs, the impact of structural inhomogeneities on their properties, and the development of new active materials. It also covers the extensive experimental data on the modification of solid solutions, the influence of different modifiers, and the resulting electrical, dielectric, and mechanical characteristics. This book serves as an essential resource for researchers, engineers, and students interested in the cutting-edge advancements in environmentally friendly smart materials and their wide-ranging applications. 410 0$aEngineering Materials,$x1868-1212 606 $aMetals 606 $aCeramic materials 606 $aMagnetic materials 606 $aMaterials 606 $aChemistry 606 $aCondensed matter 606 $aMetals and Alloys 606 $aCeramics 606 $aMagnetic Materials 606 $aMaterials Chemistry 606 $aStructure of Condensed Matter 615 0$aMetals. 615 0$aCeramic materials. 615 0$aMagnetic materials. 615 0$aMaterials. 615 0$aChemistry. 615 0$aCondensed matter. 615 14$aMetals and Alloys. 615 24$aCeramics. 615 24$aMagnetic Materials. 615 24$aMaterials Chemistry. 615 24$aStructure of Condensed Matter. 676 $a620.16 700 $aVerbenko$b Ilya A$01834078 701 $aParinov$b Ivan A$01650866 701 $aGlazunova$b Ekaterina V$01834079 701 $aDudkina$b Svetlana I$01834080 701 $aAndryushin$b Konstantin P$01834081 701 $aVolkov$b Dmitry V$01834082 701 $aReznichenko$b Larisa A$01834083 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9911015857803321 996 $aEnvironmentally Friendly Smart Materials with Special Electrical and Magnetic Properties$94409173 997 $aUNINA