LEADER 02796nam 22006375 450 001 9911001456503321 005 20250505224231.0 010 $a3-662-71224-5 024 7 $a10.1007/978-3-662-71224-5 035 $a(CKB)38696235700041 035 $a(MiAaPQ)EBC32068813 035 $a(Au-PeEL)EBL32068813 035 $a(DE-He213)978-3-662-71224-5 035 $a(EXLCZ)9938696235700041 100 $a20250501d2025 u| 0 101 0 $aeng 135 $aur||||||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aElliptic Functions and Modular Forms /$fby Max Koecher, Aloys Krieg 205 $a1st ed. 2025. 210 1$aBerlin, Heidelberg :$cSpringer Berlin Heidelberg :$cImprint: Springer,$d2025. 215 $a1 online resource (373 pages) 225 1 $aUniversitext,$x2191-6675 311 08$a3-662-71223-7 320 $aIncludes bibliographical references and index. 327 $a1 Elliptic functions -- 2 Geometry in the upper-half plane and the action of the modular group -- 3 Modular forms -- 4 The Hecke-Petersson theory -- 5 Theta series. 330 $aThe theory of elliptic functions and modular forms is rich and storied, though it has a reputation for difficulty. In this textbook, the authors successfully bridge foundational concepts and advanced material. Following Weierstrass?s approach to elliptic functions, they also cover elliptic curves and complex multiplication. The sections on modular forms, which can be read independently, include discussions of Hecke operators and Dirichlet series. Special emphasis is placed on theta series, with some advanced results included. With detailed proofs and numerous exercises, this book is well-suited for self-study or use as a reference. A companion website provides videos and a discussion forum on the topic. 410 0$aUniversitext,$x2191-6675 606 $aFunctions of complex variables 606 $aNumber theory 606 $aGeometry, Hyperbolic 606 $aGroup theory 606 $aFunctions of a Complex Variable 606 $aNumber Theory 606 $aHyperbolic Geometry 606 $aGroup Theory and Generalizations 615 0$aFunctions of complex variables. 615 0$aNumber theory. 615 0$aGeometry, Hyperbolic. 615 0$aGroup theory. 615 14$aFunctions of a Complex Variable. 615 24$aNumber Theory. 615 24$aHyperbolic Geometry. 615 24$aGroup Theory and Generalizations. 676 $a516.9 700 $aKoecher$b Max$062857 702 $aKrieg$b Aloys 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9911001456503321 996 $aElliptic Functions and Modular Forms$94384381 997 $aUNINA LEADER 00789nam0-2200253 --450 001 9911014879903321 005 20250717081916.0 010 $a88-85900-43-7 100 $a20250717d2000----kmuy0itay5050 ba 101 0 $aita 102 $aIT 105 $aa 001yy 200 1 $a<>quattro piazzette$earredo urbano del corso VI aprile ad Alcamo$eprogetto e realizzazione$fAnna Maria Fundarņ 210 $aPalermo$cEdizioni Guida$d2000 215 $a71 p.$cill.$d24 cm 610 0 $aAlcamo$aTrapani $aArredi urbani$aProgetti 700 1$aFundarņ,$bAnna Maria$0343318 801 0$aIT$bUNINA$gREICAT$2UNIMARC 901 $aBK 912 $a9911014879903321 952 $aDE FUSCO 683$bRDF 717$fDARST 959 $aDARST 996 $aQuattro piazzette$94404696 997 $aUNINA