LEADER 03244nam 22006015 450 001 9910299987203321 005 20200630151234.0 010 $a1-4939-1945-8 024 7 $a10.1007/978-1-4939-1945-1 035 $a(CKB)3710000000324979 035 $a(SSID)ssj0001408283 035 $a(PQKBManifestationID)11856284 035 $a(PQKBTitleCode)TC0001408283 035 $a(PQKBWorkID)11347433 035 $a(PQKB)10983923 035 $a(DE-He213)978-1-4939-1945-1 035 $a(MiAaPQ)EBC6313174 035 $a(MiAaPQ)EBC5594856 035 $a(Au-PeEL)EBL5594856 035 $a(OCoLC)899068896 035 $a(PPN)183153189 035 $a(EXLCZ)993710000000324979 100 $a20141211d2014 u| 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt 182 $cc 183 $acr 200 13$aAn Introductory Course in Functional Analysis /$fby Adam Bowers, Nigel J. Kalton 205 $a1st ed. 2014. 210 1$aNew York, NY :$cSpringer New York :$cImprint: Springer,$d2014. 215 $a1 online resource (XVI, 232 p. 2 illus.) 225 1 $aUniversitext,$x0172-5939 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a1-4939-1944-X 320 $aIncludes bibliographical references and index. 327 $aForeword -- Preface -- 1 Introduction.- 2 Classical Banach spaces and their duals -- 3 The Hahn?Banach theorems.- 4 Consequences of completeness -- 5 Consequences of convexity -- 6 Compact operators and Fredholm theory -- 7 Hilbert space theory -- 8 Banach algebras -- A Basics of measure theory -- B Results from other areas of mathematics -- References -- Index. 330 $aBased on a graduate course by the celebrated analyst Nigel Kalton, this well-balanced introduction to functional analysis makes clear not only how, but why, the field developed. All major topics belonging to a first course in functional analysis are covered. However, unlike traditional introductions to the subject, Banach spaces are emphasized over Hilbert spaces, and many details are presented in a novel manner, such as the proof of the Hahn?Banach theorem based on an inf-convolution technique, the proof of Schauder's theorem, and the proof of the Milman?Pettis theorem. With the inclusion of many illustrative examples and exercises, An Introductory Course in Functional Analysis equips the reader to apply the theory and to master its subtleties. It is therefore well-suited as a textbook for a one- or two-semester introductory course in functional analysis or as a companion for independent study. 410 0$aUniversitext,$x0172-5939 606 $aFunctional analysis 606 $aFunctional Analysis$3https://scigraph.springernature.com/ontologies/product-market-codes/M12066 615 0$aFunctional analysis. 615 14$aFunctional Analysis. 676 $a515.7 700 $aBowers$b Adam$4aut$4http://id.loc.gov/vocabulary/relators/aut$0722022 702 $aKalton$b Nigel J$4aut$4http://id.loc.gov/vocabulary/relators/aut 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910299987203321 996 $aAn Introductory Course in Functional Analysis$92508618 997 $aUNINA LEADER 00929nam0-2200325 --450 001 9911014869103321 005 20250728150437.0 010 $a88-7018-117-0 100 $a20250728d1990----kmuy0itay5050 ba 101 1 $aita$cger 102 $aIT 105 $ay 001yy 200 1 $aErmeneutica e istorica$fReinhart Koselleck, Hans-Georg Gadamer 210 $aGenova$cIl melangolo$d1990 215 $a49 p.$d21 cm 225 1 $aOpuscula$v38 300 $aTraduzione di Paola Biale 454 0$12001$aHermeneutik und Hisorik$94410322 610 0 $aFilosofia e storia 676 $a121.68 700 1$aKoselleck,$bReinhart$0126804 701 1$aGadamer,$bHans-Georg$0142427 702 1$aBiale,$bPaola 801 0$aIT$bUNINA$gREICAT$2UNIMARC 901 $aBK 912 $a9911014869103321 952 $aDE FUSCO 843$bRDF 881$fDARST 959 $aDARST 996 $aHermeneutik und Hisorik$94410322 997 $aUNINA