LEADER 03937nam 22006495 450 001 9911011778903321 005 20250619125404.0 010 $a3-031-87588-5 024 7 $a10.1007/978-3-031-87588-5 035 $a(MiAaPQ)EBC32163403 035 $a(Au-PeEL)EBL32163403 035 $a(CKB)39395917900041 035 $a(DE-He213)978-3-031-87588-5 035 $a(EXLCZ)9939395917900041 100 $a20250619d2025 u| 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aIntelligent and Efficient Video Moment Localization /$fby Meng Liu, Yupeng Hu, Weili Guan, Liqiang Nie 205 $a1st ed. 2025. 210 1$aCham :$cSpringer Nature Switzerland :$cImprint: Springer,$d2025. 215 $a1 online resource (229 pages) 311 08$a3-031-87587-7 327 $aChapter 1: Introduction -- Chapter 2: Semantic Enhanced Video Moment Localization -- Chapter 3: Semantic Alignment Video Moment Localization -- Chapter 4: Semantic Pruning Video Moment Localization -- Chapter 5: Semantic Collaborative Video Moment Localization -- Chapter 6: Weakly-Supervised Video Moment Localization -- Chapter 7: Efficient Hashing based Video Moment Localization -- Chapter 8: Research Frontiers. 330 $aThis book provides a comprehensive exploration of video moment localization, a rapidly emerging research field focused on enabling precise retrieval of specific moments within untrimmed, unsegmented videos. With the rapid growth of digital content and the rise of video-sharing platforms, users face significant challenges when searching for particular content across vast video archives. This book addresses how video moment localization uses natural language queries to bridge the gap between video content and semantic understanding, offering an intuitive solution for locating specific moments across diverse domains like surveillance, education, and entertainment. This book explores the latest advancements in video moment localization, addressing key issues such as accuracy, efficiency, and scalability. It presents innovative techniques for contextual understanding and cross-modal semantic alignment, including attention mechanisms and dynamic query decomposition. Additionally, the book discusses solutions for enhancing computational efficiency and scalability, such as semantic pruning and efficient hashing, while introducing frameworks for better integration between visual and textual data. It also examines weakly-supervised learning approaches to reduce annotation costs without sacrificing performance. Finally, the book covers real-world applications and offers insights into future research directions. 606 $aImage processing$xDigital techniques 606 $aComputer vision 606 $aArtificial intelligence$xData processing 606 $aQuantitative research 606 $aMultimedia systems 606 $aComputer Imaging, Vision, Pattern Recognition and Graphics 606 $aData Science 606 $aData Analysis and Big Data 606 $aMultimedia Information Systems 615 0$aImage processing$xDigital techniques. 615 0$aComputer vision. 615 0$aArtificial intelligence$xData processing. 615 0$aQuantitative research. 615 0$aMultimedia systems. 615 14$aComputer Imaging, Vision, Pattern Recognition and Graphics. 615 24$aData Science. 615 24$aData Analysis and Big Data. 615 24$aMultimedia Information Systems. 676 $a006 700 $aLiu$b Meng$01830182 701 $aHu$b Yupeng$01830183 701 $aGuan$b Weili$01799327 701 $aNie$b Liqiang$01783719 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9911011778903321 996 $aIntelligent and Efficient Video Moment Localization$94400464 997 $aUNINA