LEADER 00687nam0-22002411i-450- 001 990001295150403321 035 $a000129515 035 $aFED01000129515 035 $a(Aleph)000129515FED01 035 $a000129515 100 $a20000920d1983----km-y0itay50------ba 101 0 $aeng 200 1 $aPerspectives of Elementary Mathematics$fb y HOCHSCHILD G.P. 210 $aNew York [etc.]$cSpringer-Verlag$d1983 700 1$aHochschild,$bGerhard Paul$058890 801 0$aIT$bUNINA$gRICA$2UNIMARC 901 $aBK 912 $a990001295150403321 952 $a107-G-16$b31$fMA1 959 $aMA1 996 $aPerspectives of Elementary Mathematics$9384119 997 $aUNINA DB $aING01 LEADER 03177nam 22006375 450 001 9911011649403321 005 20250619125355.0 010 $a981-9655-42-0 024 7 $a10.1007/978-981-96-5542-7 035 $a(MiAaPQ)EBC32163407 035 $a(Au-PeEL)EBL32163407 035 $a(CKB)39395921300041 035 $a(DE-He213)978-981-96-5542-7 035 $a(OCoLC)1526861897 035 $a(EXLCZ)9939395921300041 100 $a20250619d2025 u| 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aTopological Fixed-Point Theory in Suitable Banach Algebras with Applications /$fby Aref Jeribi, Najib Kaddachi 205 $a1st ed. 2025. 210 1$aSingapore :$cSpringer Nature Singapore :$cImprint: Springer,$d2025. 215 $a1 online resource (549 pages) 225 1 $aInfosys Science Foundation Series in Mathematical Sciences,$x2364-4044 311 08$a981-9655-41-2 327 $aTopological Structures -- Fixed-Point Theory in Suitable Banach Algebras -- Fixed-Point Theory for Block Operator Matrices -- Nonlinear One-Dimensional Boundary-Value Problems -- Two-Dimensional Boundary-Value Problems -- Existence Theory of Critical-Type of Fixed Point -- Two-Dimensional Value Problems for Differential Inclusion. 330 $aThis book delves into the topics of fixed-point theory as applied to block operator matrices within the context of Banach algebras featuring multi-valued inputs. Its scope extends to a broad range of equations, encompassing nonlinear biological models as well as two-dimensional boundary value problems associated with burgeoning cell populations and functional systems of differential and integral inclusions. The book systematically introduces the principles of topological fixed-point theory, offering insights into various classes of both single-valued and multi-valued maps. The overarching goal is to disseminate key techniques and outcomes derived from fixed-point theory, with a specific emphasis on its application to both single-valued and multi-valued mappings within the framework of Banach algebras. 410 0$aInfosys Science Foundation Series in Mathematical Sciences,$x2364-4044 606 $aFunctional analysis 606 $aApproximation theory 606 $aOperator theory 606 $aIntegral equations 606 $aFunctional Analysis 606 $aApproximations and Expansions 606 $aOperator Theory 606 $aIntegral Equations 615 0$aFunctional analysis. 615 0$aApproximation theory. 615 0$aOperator theory. 615 0$aIntegral equations. 615 14$aFunctional Analysis. 615 24$aApproximations and Expansions. 615 24$aOperator Theory. 615 24$aIntegral Equations. 676 $a515.7 700 $aJeribi$b Aref$0755592 701 $aKaddachi$b Najib$01830220 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9911011649403321 996 $aTopological Fixed-Point Theory in Suitable Banach Algebras with Applications$94400523 997 $aUNINA