LEADER 02569nam 22007335 450 001 9910974653503321 005 20240506180625.0 010 $a9781349700233 010 $a1349700231 024 7 $a10.1057/9781137504395 035 $a(CKB)3880000000003648 035 $a(SSID)ssj0001520520 035 $a(PQKBManifestationID)12617404 035 $a(PQKBTitleCode)TC0001520520 035 $a(PQKBWorkID)11526258 035 $a(PQKB)11319268 035 $a(SSID)ssj0001661135 035 $a(PQKBManifestationID)16441606 035 $a(PQKBTitleCode)TC0001661135 035 $a(PQKBWorkID)14985592 035 $a(PQKB)11783220 035 $a(DE-He213)978-1-137-50439-5 035 $a(MiAaPQ)EBC4001168 035 $a(PPN)191700231 035 $a(Perlego)3487707 035 $a(EXLCZ)993880000000003648 100 $a20160108d2015 u| 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt 182 $cc 183 $acr 200 10$aTheatres of Learning Disability $eGood, Bad, or Plain Ugly? /$fby Matt Hargrave 205 $a1st ed. 2015. 210 1$aLondon :$cPalgrave Macmillan UK :$cImprint: Palgrave Macmillan,$d2015. 215 $a1 online resource (XIV, 290 p.) 300 $aBibliographic Level Mode of Issuance: Monograph 311 08$a9781137504388 311 08$a1137504382 311 08$a9781137504395 311 08$a1137504390 320 $aIncludes bibliographical references and index. 330 $aWinner of the TaPRA New Career Research in Theatre/Performance Prize 2016 This is the first scholarly book to focus exclusively on theatre and learning disability as theatre, rather than advocacy or therapy. Hargrave provocatively realigns the - hitherto unvoiced - assumptions that underpin such practice and proposes that learning disabled artists have earned the right to full critical review. 606 $aTheater$xHistory 606 $aPerforming arts 606 $aTheater 606 $aArts 606 $aTheatre History 606 $aTheatre and Performance Arts 606 $aArts 615 0$aTheater$xHistory. 615 0$aPerforming arts. 615 0$aTheater. 615 0$aArts. 615 14$aTheatre History. 615 24$aTheatre and Performance Arts. 615 24$aArts. 676 $a791.087 686 $aPER011020$2bisacsh 700 $aHargrave$b Matt$4aut$4http://id.loc.gov/vocabulary/relators/aut$01791693 906 $aBOOK 912 $a9910974653503321 996 $aTheatres of Learning Disability$94329413 997 $aUNINA LEADER 05567nam 22006611 450 001 9911011301303321 005 20170816142527.0 010 $a9789814415491 010 $a9814415499 035 $a(CKB)2670000000425262 035 $a(EBL)1389079 035 $a(OCoLC)861528046 035 $a(SSID)ssj0000682875 035 $a(PQKBManifestationID)12294827 035 $a(PQKBTitleCode)TC0000682875 035 $a(PQKBWorkID)10688486 035 $a(PQKB)10528955 035 $a(MiAaPQ)EBC1389079 035 $a(WSP)00000270 035 $a(Perlego)847400 035 $a(EXLCZ)992670000000425262 100 $a19860417d1989 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aQuantum theory of angular momentum $eIrreducible tensors, spherical harmonics, vector coupling coefficients 3 nj symbols /$fby D.A. Varshalovich, A.N. Moskalev, V.K. Khersonskii 210 1$aSingapore ;$aPhiladelphia :$cWorld Scientific Pub.,$d1989. 215 $a1 online resource (528 p.) 300 $aTranslation of: Kvantovaia teoriia uglovogo momenta. 311 08$a9781299833272 311 08$a1299833276 311 08$a9789971501075 311 08$a9971501074 320 $aIncludes bibliographical references. 327 $aCONTENTS; PREFACE; INTRODUCTION: BASIC CONCEPTS; Chapter 1 ELEMENTS OF VECTOR AND TENSOR THEORY; 1.1. COORDINATE SYSTEMS. BASIS VECTORS; 1.1.1. Cartesian Coordinate System; 1.1.2. Polar Coordinate System; 1,1.3. Spherical Coordinate System; 1.1.4, Helicity Basis Vector; 1.1.5. Relations Between Different Basis Vectors; 1.2. VECTORS. TENSORS; 1.2.1. Vector Components; 1.2.2. Scalar Product of Vectors; 1.2.3. Vector Product of Vectors; 1.2.4. Products Involving Three or More Vectors; 1.2.5. Tensors ?ik and ?ikl; 1.3. DIFFERENTIAL OPERATIONS; 1.3.1. Operator V; 1.3.2. Laplace Operator 327 $a1.3.3. Differential Operations on Scalars and Vectors1.4. ROTATIONS OF COORDINATE SYSTEM; 1.4.1. Description of Rotations in Terms of the Euler Angles; 1.4.2. Description of Rotations in Terms of Rotation Axis and Rotation Angle; 1.4.3. Description of Rotations in Terms of Unitary 2x2 Matrices. Cayley-Klein Parameters.; 1.4.4. Relations Between Different Descriptions of Rotations; 1.4.5. Rotation Operator; 1.4.6. Transformation of Cartesian Vectors and Tensors Under Rotations of Coordinate Systems. Rotation Matrix a; 1.4.7. Addition of Rotations; Chapter 2 ANGULAR MOMENTUM OPERATORS 327 $a2.1. TOTAL ANGULAR MOMENTUM OPERATOR2.1.1. Definition; 2.1.2. Commutation Relations; 2.1.3. Coordinate Inversion. Time Reversal; 2.1.4. Total Angular Momentum of a System. Orbital and Spin Angular Momenta; 2.2. ORBITAL ANGULAR MOMENTUM OPERATOR; 2.2.1. Definition; 2.2.2. Commutation Relations; 2.2.3. Explicit Form; 2.3. SPIN ANGULAR MOMENTUM OPERATOR; 2.3.1. Definition; 2.3.2. Commutation Relations; 2.3.3. Explicit Form; 2.3.4. Traces of Products of Spin Matrices; 2.4. POLARIZATION OPERATORS; 2.4.1. Definition; 2.4.2. Explicit Form 327 $a2.4.3. Properties of LM(S) under Transformations of the Coordinate System2.4.5. Commutators and Anticommutators; 2.4.6. Traces of Products of Polarization Operators; 2.5. SPIN MATRICES FOR 5 = 1/2; 2.5.1. Explicit Form; 2.5.2. Commutators and Anticommutators; 2.5.3. Products of Spin Matrices; 2.5.4. Functions of Spin Matrices; 2.5.5. Rotation Operators; 2.5.6. Traces of Products of Spin Matrices (S = 1/2); 2.6. SPIN MATRICES AND POLARIZATION OPERATORS FOR S = 1; 2.6.1. Spin S = 1; 2.6.2. Explicit Form; 2.6.3. Products of Spin and Polarization Matrices; 2.6.4. Functions of Spin Matrices 327 $a2.6.5. Operators of Coordinate Rotations2.6.6. Traces of Products of Spin Matrices; Chapter 3 IRREDUCIBLE TENSORS; 3.1. DEFINITION AND PROPERTIES OF IRREDUCIBLE TENSORS; 3.1.1. Definition; 3.1.2. Covariant and Contravariant Components; 3.1.3. Transformation of Irreducible Tensors Under a Rotation of the Coordinate System; 3.1.4. Transformation of Irreducible Tensors Under Inversion of the Coordinate System; 3.1.5. Double Tensors; 3.1.6. Examples of Irreducible Tensors; 3.1.7. Direct and Irreducible Tensor Products. Commutators of Tensor Products; 3.1.8. Scalar Products of Irreducible Tensors 327 $a3.2. RELATION BETWEEN THE IRREDUCIBLE TENSOR ALGEBRA AND VECTOR AND TENSOR THEORY 330 $aThis is the most complete handbook on the quantum theory of angular momentum. Containing basic definitions and theorems as well as relations, tables of formula and numerical tables which are essential for applications to many physical problems, the book is useful for specialists in nuclear and particle physics, atomic and molecular spectroscopy, plasma physics, collision and reaction theory, quantum chemistry, etc. The authors take pains to write many formulae in different coordinate systems thus providing users with added ease in consulting this book. Each chapter opens with a comprehensive l 606 $aAngular momentum (Nuclear physics) 606 $aQuantum theory 615 0$aAngular momentum (Nuclear physics) 615 0$aQuantum theory. 676 $a530.1/2 700 $aVarshalovich$b D. A$g(Dmitrii? Aleksandrovich)$0920549 701 $aMoskalev$b A. N$01829914 701 $aKhersonskii?$b V. K$g(Valerii? Kel?manovich)$01829915 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9911011301303321 996 $aQuantum theory of angular momentum$94400051 997 $aUNINA