LEADER 01050nam0-22003611i-450- 001 990001026560403321 005 20060927110124.0 035 $a000102656 035 $aFED01000102656 035 $a(Aleph)000102656FED01 035 $a000102656 100 $a20001205d1965----km-y0itay50------ba 101 0 $aeng 102 $aUS 200 1 $aSchaum's outline of theory and problems of general topology$fby Seymour Lipschutz 210 $aNew York$cMcGraw-Hill$dc1965 215 $a239 p.$cill.$d28 cm 225 1 $aSchaum's outline series 610 0 $aGeometria algebrica 610 0 $aTopologia 610 0 $aTopologia algebrica 610 0 $aSistemi dinamici 610 0 $aFrattali matematici 700 1$aLipschutz,$bSeymour$01221 801 0$aIT$bUNINA$gRICA$2UNIMARC 901 $aBK 912 $a990001026560403321 952 $a11-072F$b7162$fFI1 952 $a11-072..001F$fFI1 952 $a11-072.002F$fFI1 959 $aFI1 996 $aSchaum's outline of theory and problems of general topology$9255870 997 $aUNINA LEADER 11554nam 22006613 450 001 9911009381703321 005 20240407090435.0 010 $a9780750341141 010 $a0750341149 035 $a(MiAaPQ)EBC31252946 035 $a(Au-PeEL)EBL31252946 035 $a(CKB)31356147700041 035 $a(Exl-AI)31252946 035 $a(OCoLC)1429725582 035 $a(EXLCZ)9931356147700041 100 $a20240407d2020 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aAdvances in Modern Sensors $ePhysics, Design, Simulation and Applications 205 $a1st ed. 210 1$aBristol :$cInstitute of Physics Publishing,$d2020. 210 4$dİ2020. 215 $a1 online resource (367 pages) 225 1 $aIOP Series in Sensors and Sensor Systems Series 311 08$a9780750327084 311 08$a0750327081 327 $aIntro -- Preface -- Acknowledgments -- Editor biography -- G R Sinha -- List of contributors -- Chapter 1 Introduction to sensors -- 1.1 Introduction -- 1.2 Sensor characteristics -- 1.2.1 Transfer function -- 1.2.2 Full-scale input (FSI) -- 1.2.3 Full-scale output (FSO) -- 1.2.4 Accuracy -- 1.2.5 Calibration -- 1.2.6 Hysteresis -- 1.2.7 Non-linearity -- 1.2.8 Resolution -- 1.2.9 Saturation -- 1.2.10 Repeatability -- 1.2.11 Dead band -- 1.2.12 Reliability -- 1.2.13 Output characteristics -- 1.2.14 Impedance -- 1.2.15 Excitation -- 1.2.16 Dynamic characteristics -- 1.2.17 Precision -- 1.2.18 Environmental factors -- 1.2.19 Uncertainty -- 1.2.20 Application characteristics -- 1.3 Types of sensors -- 1.3.1 Temperature sensors -- 1.3.2 Position sensors -- 1.3.3 Light sensors -- 1.3.4 Sound sensor -- 1.3.5 Proximity sensor -- 1.3.6 Accelerometer -- 1.3.7 Infrared sensor -- 1.3.8 Pressure sensor -- 1.3.9 Ultrasonic sensors -- 1.3.10 Touch sensor -- 1.3.11 Humidity sensor -- 1.3.12 Colour sensor -- 1.3.13 Chemical sensor -- 1.3.14 Seismic sensor -- 1.3.15 Magnetic sensor -- 1.4 Comparison of different sensors -- 1.5 Modern sensors -- 1.6 Conclusions -- References -- Chapter 2 Classification and characteristics of sensors -- 2.1 Introduction -- 2.2 Classification -- 2.3 Commonly used sensors and their features -- 2.4 Transfer function -- 2.5 Characteristics of sensors -- 2.6 Sensors should meet the following basic requirements -- 2.7 Factors for choosing sensors -- 2.8 Conclusion -- References -- Chapter 3 Optical sensors: overview, characteristics and applications -- 3.1 Introduction -- 3.2 Optical sensors: fundamentals -- 3.2.1 Modes of operation -- 3.2.2 Light sources for optical sensors -- 3.2.3 Advantages of optical sensors -- 3.3 Optical sensing devices (detectors) -- 3.3.1 Photoemissive cells (photoemitters). 327 $a3.3.2 Photoresistor or light dependent resistors -- 3.3.3 Photodiodes -- 3.3.4 Phototransistor -- 3.3.5 Infrared sensors -- 3.3.6 Fiber optic sensor -- References -- Chapter 4 Recent applications of chalcogenide glasses (ChGs) based sensors -- 4.1 ChGs based sensors: a brief introduction -- 4.2 Fabrication and molding of ChGs in the form of different devices for sensing applications -- 4.2.1 Infrared optical fibers -- 4.2.2 Infrared optical lenses -- 4.2.3 Thin film membranes -- 4.3 Description of some principals behind the sensing applications -- 4.3.1 Attenuated total internal reflection -- 4.3.2 Fiber evanescent wave spectroscopy -- 4.3.3 Thermal imaging -- 4.4 Some exclusive examples of sensing applications of ChGs based sensors -- 4.4.1 Application in bio-sensing and food security -- 4.4.2 Early cancer diagnostics -- 4.4.3 Monitoring of pollutants in groundwater -- 4.4.4 Night vision systems for surveillance assignments -- 4.4.5 Monitoring of global warming -- 4.4.6 Other significant applications -- 4.5 Conclusions -- References -- Chapter 5 Advanced dynamic and static calibration methods for optical imaging sensors -- 5.1 Introduction -- 5.2 Principle of camera calibrations -- 5.2.1 Position determination principle using optical cameras -- 5.2.2 Camera calibration principle -- 5.2.3 Camera calibration model -- 5.2.4 Distortion model in camera calibration -- 5.3 Dynamic calibration approaches -- 5.3.1 The principle of the dynamic camera calibration -- 5.3.2 Calibration model used for the dynamic calibration -- 5.3.3 Dynamic calibration with multi-aperture MEMS light lead-in devices -- 5.4 Static calibration principle with mSOL -- 5.4.1 Static calibration general principle -- 5.4.2 Static calibration principle with DOEs -- 5.4.3 Calibration configurations with mSOL -- 5.4.4 Calibration theory. 327 $a5.4.5 The position extraction approach of the predefined target images -- 5.4.6 Applied examples -- 5.5 Discussion and future development directions -- 5.6 Conclusion -- References -- Chapter 6 Smart and wearable sensors used in numerous modern applications and their significance -- 6.1 Introduction -- 6.2 Smart sensors properties -- 6.2.1 Self-calibration -- 6.2.2 Reliability or self-health assessment -- 6.2.3 Self-healing -- 6.2.4 Compensated measurements -- 6.2.5 Self-adaptability: exchange accuracy for speed and vice versa -- 6.3 Smart sensors types -- 6.4 Smart sensor applications -- 6.4.1 Smart cities -- 6.4.2 Smart environment -- 6.4.3 Smart factories -- 6.5 Case study: smart home surveillance system using a smart camera -- 6.6 Wearable sensors -- 6.7 Applications of wearable sensors -- 6.7.1 Programmable bio-electric ASIC sensors -- 6.7.2 Diabetes wearable medical device -- 6.7.3 Cancer detecting wearable device -- 6.7.4 Wearable sweat-sensor -- 6.7.5 Wearable peritoneal dialysis device -- 6.7.6 Predicting the progress of Alzheimer's and dementia diseases -- 6.7.7 Monitoring Parkinson's disease -- 6.7.8 Vision-related biosensors -- 6.8 Conclusion -- References -- Chapter 7 Smart stick for the visually impaired -- 7.1 Introduction -- 7.2 Smart blind stick -- 7.3 Hardware description -- 7.3.1 Arduino UNO -- 7.3.2 Ultrasonic sensor -- 7.3.3 Water sensor -- 7.3.4 GPS module -- 7.3.5 LDR-light dependent resistor -- 7.3.6 Alarm unit -- 7.4 Results -- 7.4.1 Ultrasonic sensor -- 7.4.2 Detection of water by water sensor -- 7.4.3 Detection of light by using LDR -- 7.4.4 Location of the stick -- 7.5 Conclusion -- References -- Chapter 8 Smart and wearable sensors -- 8.1 Introduction -- 8.2 Features of smart sensors -- 8.3 Evaluation of smart sensors -- 8.3.1 Third-generation -- 8.3.2 Fourth-generation -- 8.3.3 Fifth-generation. 327 $a8.4 Design of a smart sensor -- 8.4.1 Data acquisition -- 8.4.2 Data transfer -- 8.4.3 Data processing -- 8.5 Consequences -- 8.5.1 Advantages of smart sensor -- 8.5.2 Disadvantages -- 8.6 General applications -- 8.7 Wearable sensors -- 8.7.1 Need for wearable sensors -- 8.7.2 Smart sensor as a wearable sensor -- 8.8 Wearable sensor devices -- 8.8.1 Wristwatches architecture and performance -- 8.8.2 Electronic T-Shirt architecture and working principle -- 8.8.3 BP monitoring using PPG -- 8.9 Conclusion -- References -- Chapter 9 Cognitive and biosensors: an overview -- 9.1 Introduction and background -- 9.2 Cognitive sensors -- 9.2.1 Research challenges -- 9.2.2 Application of cognitive sensors -- 9.2.3 Cognitive sensors and machine learning -- 9.2.4 Cognitive sensors and security threats -- 9.3 Biosensors -- 9.3.1 Research challenges -- 9.3.2 Application of biosensors -- 9.4 Conclusion -- Acknowledgment -- References -- Chapter 10 Sensor technologies combined with AI helping in smart transport systems as driverless cars -- 10.1 History of driverless cars using smart sensors -- 10.2 Automation levels -- 10.3 Sensors and other technologies used by manufacturing companies -- 10.4 Design components -- 10.5 Sensor technology -- 10.5.1 GPS -- 10.5.2 LiDAR -- 10.5.3 Cameras -- 10.5.4 Radar sensors -- 10.5.5 Ultrasonic sensors -- 10.6 Challenges and future research -- 10.7 Conclusions -- References -- Chapter 11 Recent advancements in smart and wearable sensors -- 11.1 Introduction -- 11.1.1 Basics of SWSs -- 11.1.2 Working principle of a smart sensor -- 11.2 Types of wearable sensors -- 11.2.1 Optical sensors -- 11.2.2 Physical sensors -- 11.2.3 Chemical sensors -- 11.2.4 Multiplexed sensors -- 11.2.5 Wireless sensors -- 11.3 Challenges in wearable chemical sensors and possible solutions -- 11.3.1 Materials-based challenges with possible solution. 327 $a11.3.2 Operational challenges and possible solutions -- 11.4 Conclusion and future direction -- References -- Chapter 12 Design and implementation of a wearable gaze tracking device with near-infrared and visible-light image sensors -- 12.1 Introduction -- 12.2 Proposed wearable gaze tracking design -- 12.2.1 Near-infrared image sensor based wearable eye tracker design [13, 14] -- 12.2.2 Visible-light image sensor based wearable eye tracker design [17-19] -- 12.2.3 Calibration and gaze tracking function for wearable eye tracking device -- 12.3 Experimental results and comparisons -- 12.4 Conclusion and future works -- Acknowledgments -- References -- Chapter 13 Vibration powered wireless sensor networks-harvesting energy from good vibrations -- 13.1 Introduction -- 13.2 literature survey -- 13.2.1 Piezoelectric sensors -- 13.2.2 Modeling and analysis of a bimorph piezoelectric cantilever beam for voltage generation -- 13.2.3 Feasibility of structural monitoring with vibration powered sensors -- 13.2.4 Vibration powered wireless sensor networks -- 13.3 Existing methodology -- 13.3.1 Proposed methodology -- 13.3.2 Comparison of proposed methodology with existing methodology -- 13.3.3 Advantages -- 13.3.4 Disadvantages -- 13.4 Conclusion -- References -- Chapter 14 Comprehensive review on brain-computer interface sensor-based smart home appliances control system -- 14.1 Introduction -- 14.1.1 Motivation and requirement -- 14.2 Background -- 14.2.1 Electroencephalography (EEG) -- 14.2.2 Brain waves -- 14.2.3 EEG artifacts -- 14.2.4 Control signal of BCI -- 14.3 Step involved in BCI-based controlling home appliances system -- 14.3.1 Data acquisition framework -- 14.3.2 Preprocessing and feature extraction -- 14.3.3 Classification results -- 14.4 Controlling methods based on single and multiple appliances -- 14.4.1 Single appliance control. 327 $a14.4.2 Multiple appliance control. 330 $aEncompasses the physics, design characteristics, simulation and interface electronics and including case studies, future challenges, as well as several other aspects of wider sensor technology, Advances in Modern Sensors provides an overview of modern sensors and their applications. The broad scope will appeal to industrial and academic researchers, and application engineers. 410 0$aIOP Series in Sensors and Sensor Systems Series 606 $aIntelligent sensors$7Generated by AI 606 $aWearable technology$7Generated by AI 615 0$aIntelligent sensors 615 0$aWearable technology 700 $aSinha$b G. R$01733572 701 $aPatel$b Bhagwati Charan$01827486 701 $aGoel$b Naveen$01827487 701 $aThakur$b Kavita$01827488 701 $aVyas$b Prafulla$01827489 701 $aDeshmukh$b Kusumanjali$01827490 701 $aMehta$b Neeraj$01827491 701 $aLi$b Jin$01263437 701 $aLiu$b Zilong$01435934 701 $aN$b Hema$01827492 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9911009381703321 996 $aAdvances in Modern Sensors$94395650 997 $aUNINA