LEADER 11539nam 22006613 450 001 9911009380303321 005 20240407090434.0 010 $a9780750341585 010 $a0750341580 035 $a(MiAaPQ)EBC31253055 035 $a(Au-PeEL)EBL31253055 035 $a(CKB)31356172700041 035 $a(Exl-AI)31253055 035 $a(OCoLC)1149144638 035 $a(EXLCZ)9931356172700041 100 $a20240407d2020 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aNanoscale Energy Transport $eEmerging Phenomena, Methods and Applications 205 $a1st ed. 210 1$aBristol :$cInstitute of Physics Publishing,$d2020. 210 4$dİ2020. 215 $a1 online resource (488 pages) 225 1 $aIOP Ebooks Series 311 08$a9780750317672 311 08$a0750317671 327 $aIntro -- Preface -- References -- Editor biography -- Bolin Liao -- Contributors -- Outline placeholder -- Xun Li -- Sangyeop Lee -- Tianli Feng -- Xiulin Ruan -- Tengfei Luo -- Eungkyu Lee -- Ruiyang Li -- Zhiting Tian -- Jinghang Dai -- Renjiu Hu -- Jiang Guo -- Shenghong Ju -- Junichiro Shiomi -- Chengyun Hua -- Keivan Esfarjani -- Yuan Liang -- Pramod Reddy -- Edgar Meyhofer -- Longji Cui -- Dustin Lattery -- Jie Zhu -- Dingbin Huang -- Xiaojia Wang -- Rebecca Wong -- Michael Man -- Keshav Dani -- Chen Li -- Qiyang Sun -- Sunmi Shin -- Renkun Chen -- Hyeongyun Cha -- Soumyadip Sett -- Patrick Birbarah -- Tarek Gebrael -- Junho Oh -- Nenad Miljkovic -- Mona Zebarjadi -- Golam Rosul -- Sabbir Akhanda -- Shreyas Chavan -- Kalyan Boyina -- Longnan Li -- Qing Zhu -- Zhifeng Ren -- Tobias Burger -- Caroline Sempere -- Andrej Lenert -- Chapter 1 Hydrodynamic phonon transport: past, present and prospects -- 1.1 Introduction -- 1.2 Collective phonon flow -- 1.3 Peierls-Boltzmann transport equation -- 1.4 Steady-state phonon hydrodynamics -- 1.4.1 Infinitely large sample -- 1.4.2 Sample with an infinite length and a finite width -- 1.4.3 Sample with an infinite width and a finite length contacting hot and cold reservoirs -- 1.5 Unsteady phonon hydrodynamics (second sound) -- 1.6 Summary and future perspectives -- Acknowledgments -- References -- Chapter 2 Higher-order phonon scattering: advancing the quantum theory of phonon linewidth, thermal conductivity and thermal radiative properties -- 2.1 Overview -- 2.2 Formalism of four-phonon scattering -- 2.3 Strong four-phonon scattering potential -- 2.3.1 High temperature -- 2.3.2 Strongly anharmonic materials -- 2.4 Large four-phonon or suppressed three-phonon phase space -- 2.4.1 Materials with large acoustic-optical phonon band gaps -- 2.4.2 Optical phonons. 327 $a2.4.3 Two-dimensional materials with reflection symmetry -- 2.5 Further discussion -- 2.5.1 Scaling with frequency -- 2.5.2 Strong Umklapp scattering -- 2.5.3 Negligible three-phonon scattering to the second order -- 2.6 Summary and outlook -- References -- Chapter 3 Pre-interface scattering influenced interfacial thermal transport across solid interfaces -- References -- Chapter 4 Introduction to the atomistic Green's function approach: application to nanoscale phonon transport -- 4.1 Introduction -- 4.2 Atomistic Green's function -- 4.2.1 Deduction of atomistic Green's functions -- 4.2.2 Self-energy and surface Green's function -- 4.2.3 Phonon transport in one-dimensional systems -- 4.3 Recent progress -- 4.3.1 From one dimension to three dimensions -- 4.3.2 Polarization-specific transmission coefficient -- 4.3.3 Anharmonic Green's function -- 4.4 Summary -- Acknowledgments -- References -- Chapter 5 Application of Bayesian optimization to thermal science -- 5.1 Introduction -- 5.2 Bayesian optimization -- 5.2.1 Bayesian algorithm theory -- 5.2.2 Bayesian optimization implemented as a black-box tool -- 5.3 Applications of Bayesian optimization in thermal science -- 5.3.1 Thermal conductance modulation -- 5.3.2 Thermal radiation engineering -- 5.4 Summary and perspectives -- Acknowledgments -- References -- Chapter 6 Phonon mean free path spectroscopy: theory and experiments -- 6.1 Introduction -- 6.2 Principles of MFP spectroscopy -- 6.3 Theory -- 6.3.1 Nonlocal theory of heat conduction -- 6.3.2 Solving the inverse problem -- 6.4 Experiments -- 6.4.1 Size-dependent thermal conductivity measurements -- 6.4.2 TTG spectroscopy -- 6.4.3 Thermoreflectance and diffraction techniques -- 6.5 Summary -- References -- Chapter 7 Thermodynamics of anharmonic lattices from first principles -- 7.1 Introduction -- 7.1.1 Motivation. 327 $a7.1.2 Lattice dynamics theory and the self-consistent phonon idea -- 7.1.3 Implementation example of the variational approach -- 7.2 Overview: historical development -- 7.3 Modern interpretations and implementations -- 7.3.1 Selection and extraction of force constants -- 7.3.2 Sampling of the configuration space for effective theories at finite temperature -- 7.4 A recent extension to SCHA-4 -- 7.4.1 Formulation -- 7.4.2 Minimization equations with strain included -- 7.4.3 Application to a simple model -- 7.5 Conclusions -- Acknowledgement -- Appendix A Thermodynamic properties of harmonic oscillators -- Appendix B Normal modes and Gaussian averages -- Appendix C Formal SCHA equations -- References -- Chapter 8 Experimental approaches for probing heat transfer and energy conversion at the atomic and molecular scales -- 8.1 Introduction -- 8.2 Theoretical concepts -- 8.2.1 Energy transport in atomic-scale junctions -- 8.2.2 Heat dissipation and thermoelectric energy conversion in molecular junctions -- 8.3 Heat transfer and energy conversion at the atomic scale: experiments -- 8.3.1 Quantum heat transport in single-atom junctions -- 8.4 Heat dissipation in atomic- and molecular-scale junctions -- 8.5 Peltier cooling in molecular-scale junctions -- 8.6 Measurement of thermal conductance of single-molecule junctions -- 8.7 Concluding remarks and outlook -- References -- Chapter 9 Ultrafast thermal and magnetic characterization of materials enabled by the time-resolved magneto-optical Kerr effect -- 9.1 Introduction -- 9.1.1 Background and motivation -- 9.1.2 Ultrafast-laser-based metrology for transport studies -- 9.2 TR-MOKE measurement technique -- 9.2.1 The physical foundation -- 9.2.2 Optical setup of time-resolved magneto-optical Kerr effect -- 9.3 Thermal measurements -- 9.3.1 Temperature information from TR-MOKE signals. 327 $a9.3.2 Measurement process and data analysis of TR-MOKE -- 9.3.3 High-sensitivity thermal measurements enabled by TR-MOKE -- 9.4 Ultrafast magnetization dynamics -- 9.4.1 Magnetization information from TR-MOKE signals -- 9.4.2 Magnetic anisotropy and damping -- 9.5 Advanced capabilities for broader research directions -- 9.5.1 Propagating spin waves -- 9.5.2 Ultrafast energy carrier coupling -- 9.5.3 Straintronics (coupling between spin and strain) -- 9.5.4 Spin caloritronics -- 9.6 Summary and outlook -- Acknowledgements -- References -- Chapter 10 Investigation of nanoscale energy transport with time-resolved photoemission electron microscopy -- 10.1 Introduction -- 10.1.1 The era of semiconductor technologies -- 10.1.2 The importance of reaching the ultrafast frontier in semiconductor research -- 10.1.3 The grand unification of electron microscopy and femtosecond spectroscopy -- 10.2 Unlocking high spatial-temporal resolution in studies of ultrafast dynamics in semiconductors -- 10.2.1 Ultrafast transient absorption microscope (ultrafast TAM) -- 10.2.2 Ultrafast techniques utilizing electron microscopes -- 10.3 Studies of semiconductors utilizing TR-PEEM -- 10.4 Outlook and perspective of TR-PEEM technique -- 10.4.1 Ultrafast light sources with optimal repetition rate, peak power, pulse duration and energy bandwidth depending on application -- 10.4.2 Parallel data acquisition for multidimensional data -- 10.4.3 Resolving electron spin in TR-PEEM -- 10.5 Final remarks -- References -- Chapter 11 Exploring nanoscale heat transport via neutron scattering -- 11.1 Introduction -- 11.1.1 A short history -- 11.1.2 Neutron advantages -- 11.1.3 Neutron sources -- 11.1.4 Scattering theory -- 11.1.5 Neutron instruments -- 11.2 Inelastic neutron scattering and phonon transport -- 11.2.1 Thermal transport and measurable phonon properties. 327 $a11.2.2 Data reduction and analysis -- 11.2.3 Some examples -- 11.2.4 Summary -- References -- Chapter 12 Thermal transport measurements of nanostructures using suspended micro-devices -- 12.1 Introduction -- 12.2 Suspended micro-device platform -- 12.2.1 Basic principles and configuration -- 12.2.2 Sensitivity and uncertainties -- 12.2.3 Thermal contact resistance -- 12.3 Recent developments -- 12.3.1 The differential bridge method -- 12.3.2 Modulated heating -- 12.3.3 Background conductance -- 12.3.4 Characterization of heat loss from suspended beams -- 12.3.5 Electron-beam heating -- 12.3.6 Four-point thermal measurement -- 12.3.7 Integrated devices -- 12.4 Summary and outlook -- Acknowledgments -- References -- Chapter 13 Recent advances in structured surface enhanced condensation heat transfer -- 13.1 Introduction -- 13.2 Advancements in coating materials and the durability of coatings -- 13.2.1 Self-assembled monolayers -- 13.2.2 Polymers -- 13.2.3 Diamond-like carbon (DLC) -- 13.2.4 Rare earth oxides (REOs) -- 13.2.5 Hydrocarbon adsorption -- 13.2.6 Slippery omniphobic covalently attached liquids (SOCALs) -- 13.2.7 Degradation of coatings -- 13.3 Structured surfaces for low-surface-tension fluids -- 13.3.1 Re-entrant structured surfaces -- 13.3.2 Slippery liquid-infused porous surfaces (SLIPSs) and lubricant-infused surfaces (LISs) -- 13.3.3 LIS/SLIPS stability -- 13.3.4 Durability of LISs/SLIPs -- 13.4 Electric field enhanced (EFE) condensation -- 13.4.1 Electrohydrodynamic (EHD) enhancement of condensation heat transfer -- 13.4.2 Electric field induced condensation (EIC) -- 13.4.3 Electric field enhanced (EFE) jumping-droplet condensation -- 13.4.4 Potential research avenues for EFE condensation -- References -- Chapter 14 Thermionic energy conversion -- 14.1 Introduction -- 14.2 History of thermionic converters. 327 $a14.3 Theory of thermionic converters. 330 $aA valuable reference for researchers in physics, materials, mechanical and electrical engineering, as well as graduate students, Nanoscale Energy Transport provides a comprehensive and insightful review of this developing topic. The text covers new developments in the scientific basis and the practical relevance of nanoscale energy transport, highlighting the emerging effects at the nanoscale that qualitatively differ from those at the macroscopic scale. 410 0$aIOP Ebooks Series 606 $aPhonons$7Generated by AI 606 $aThermal conductivity$7Generated by AI 615 0$aPhonons 615 0$aThermal conductivity 700 $aLiao$b Bolin$01827475 701 $aFeng$b Tianli$01827476 701 $aLee$b Sangyeop$01827477 701 $aLenert$b Andrej$01827478 701 $aWang$b Xiaojia$01764376 701 $aDani$b Keshav$01827479 701 $aReddy$b Pramod$01827480 701 $aMiljkovic$b Nenad$01827481 701 $aLuo$b Tengfei$01827482 701 $aRen$b Zhifeng$01058079 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9911009380303321 996 $aNanoscale Energy Transport$94395644 997 $aUNINA