LEADER 03861nam 22006975 450 001 9911009338003321 005 20250607130246.0 010 $a3-031-85256-7 024 7 $a10.1007/978-3-031-85256-5 035 $a(CKB)39239641000041 035 $a(MiAaPQ)EBC32149948 035 $a(Au-PeEL)EBL32149948 035 $a(DE-He213)978-3-031-85256-5 035 $a(EXLCZ)9939239641000041 100 $a20250607d2025 u| 0 101 0 $aeng 135 $aur||||||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aModel Predictive Control $eEngineering Methods for Economists /$fedited by Aris Daniilidis, Lars Grüne, Josef Haunschmied, Gernot Tragler 205 $a1st ed. 2025. 210 1$aCham :$cSpringer Nature Switzerland :$cImprint: Springer,$d2025. 215 $a1 online resource (288 pages) 225 1 $aDynamic Modeling and Econometrics in Economics and Finance,$x2363-8370 ;$v31 311 08$a3-031-85255-9 327 $aChapter 1. Multi-horizon MPC and Its Application to theIntegrated Power and Thermal Management ofElectri?ed Vehicles (Qiuhao Hu) -- Chapter 2. Data/Moment-Driven Approaches for FastPredictive Control of Collective Dynamics (Giacomo Albi) -- Chapter 3. Finite-Dimensional Receding Horizon Control ofLinear Time-Varying Parabolic PDEs: StabilityAnalysis and Model-Order Reduction (Behzad Azmi) -- Chapter 4. Solving Hybrid Model Predictive ControlProblems via a Mixed-Integer Approach (Iman Nodozi) -- Chapter 5. nMPyC ? A Python Package for Solving OptimalControl Problems via Model Predictive Control (Jonas Schießl) -- Chapter 6. Controllability of Continuous Networks and aKernel-Based Learning Approximation (Michael Herty) -- Chapter 7. Economic Model Predictive Control as aSolution to Markov Decision Processes (Dirk Reinhardt) -- Chapter 8. Reinforcement Learning with Guarantees (Mario Zanon). 330 $aThe book explores the field of model predictive control (MPC). It reports on the latest developments in MPC, current applications, and presents various subfields of MPC. The book features topics such as uncertain and stochastic MPC variants, learning and neural network approaches, easy-to-use numerical implementations as well as multi-agent systems and scheduling and coordination tasks. While MPC is rooted in engineering science, this book illustrates the potential of using MPC theory and methods in non-engineering sciences and applications such as economics, finance, and environmental sciences. 410 0$aDynamic Modeling and Econometrics in Economics and Finance,$x2363-8370 ;$v31 606 $aEconometrics 606 $aOperations research 606 $aSocial sciences$xMathematics 606 $aStochastic processes 606 $aAutomatic control 606 $aQuantitative Economics 606 $aOperations Research and Decision Theory 606 $aMathematics in Business, Economics and Finance 606 $aStochastic Systems and Control 606 $aControl and Systems Theory 615 0$aEconometrics. 615 0$aOperations research. 615 0$aSocial sciences$xMathematics. 615 0$aStochastic processes. 615 0$aAutomatic control. 615 14$aQuantitative Economics. 615 24$aOperations Research and Decision Theory. 615 24$aMathematics in Business, Economics and Finance. 615 24$aStochastic Systems and Control. 615 24$aControl and Systems Theory. 676 $a629.8 700 $aDaniilidis$b Aris$01827877 701 $aGrüne$b Lars$066925 701 $aHaunschmied$b Josef$01827878 701 $aTragler$b Gernot$01827879 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9911009338003321 996 $aModel Predictive Control$94395999 997 $aUNINA