LEADER 11161nam 22005413 450 001 9911009250803321 005 20240618080241.0 010 $a9780750355599$b(electronic bk.) 010 $z9780750355582 035 $a(MiAaPQ)EBC31480683 035 $a(Au-PeEL)EBL31480683 035 $a(CKB)32306642500041 035 $a(Exl-AI)31480683 035 $a(OCoLC)1440103192 035 $a(EXLCZ)9932306642500041 100 $a20240618d2024 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aPiezoelectricity in Classical and Modern Systems 205 $a1st ed. 210 1$aBristol :$cInstitute of Physics Publishing,$d2024. 210 4$dİ2024. 215 $a1 online resource (297 pages) 225 1 $aIOP Ebooks Series 311 08$aPrint version: Willatzen, Morten Piezoelectricity in Classical and Modern Systems Bristol : Institute of Physics Publishing,c2024 9780750355582 327 $aIntro -- Editor biographies -- Divya Tripathy -- Anjali Gupta -- List of contributors -- Chapter Microbial surfactants: overview -- 1.1 Introduction to microbial surfactants -- 1.2 Historical developments of microbial surfactants -- 1.3 Molecular structure of biosurfactants -- 1.3.1 Types of biosurfactants -- 1.3.2 Surface activity of biosurfactants -- 1.3.3 Micelle formation and critical micelle concentration (CMC) -- 1.3.4 Thermodynamic properties of biosurfactants -- 1.4 Biodegradation and environmental properties of biosurfactants -- 1.4.1 Sustainable production of biosurfactants -- 1.5 Application of biosurfactants -- 1.5.1 In cosmetic industry -- 1.5.2 In the pharmaceutical industry -- 1.5.3 In agriculture -- 1.5.4 In the food industry -- 1.5.5 Environmental application -- 1.5.6 Application of biosurfactants in bio-nanotechnology -- 1.5.7 Application of biosurfactants in the petroleum industry for oil recovery -- 1.5.8 General industrial applications -- 1.6 Challenges and limitations -- 1.7 Conclusions -- Abbreviations -- References -- Chapter Biosurfactants and bioemulsifiers: introduction, types, synthesis, properties and potential applications -- 2.1 Introduction to microbial surfactants -- 2.1.1 Brief history -- 2.2 Synthetic surfactants -- 2.3 Need for an alternative and safer substitute -- 2.4 Types of microbial surfactant -- 2.5 Biosurfactant -- 2.6 Properties of biosurfactants -- 2.6.1 Non-toxic -- 2.6.2 Bio-degradable -- 2.6.3 Temperature, pH, and salinity stability -- 2.6.4 Surface and interface activity -- 2.6.5 Emulsification -- 2.6.6 Lower critical micelle concentrations (CMC) -- 2.6.7 Market potential of biosurfactants -- 2.6.8 Classification of biosurfactants -- 2.7 Bioemulsifiers -- 2.7.1 Lipopeptides -- 2.7.2 Phospholipids -- 2.8 Polymeric biosurfactants -- 2.9 Production and extraction of microbial surfactants. 327 $a2.10 Microorganisms used for surfactant production -- 2.11 Fermentation conditions for surfactant production -- 2.12 Downstream processing for surfactant extraction -- 2.12.1 Centrifugation or filtration -- 2.12.2 Extraction -- 2.12.3 Precipitation -- 2.12.4 Solvent recovery -- 2.12.5 Filtration and purification -- 2.12.6 Chromatography -- 2.12.7 Ultrafiltration or dialysis -- 2.12.8 Drying -- 2.12.9 Characterization and quality control -- 2.12.10 Packaging and storage -- 2.13 Applications of microbial surfactants -- 2.14 Enhanced oil recovery -- 2.15 Bioremediation -- 2.15.1 Biostimulation for petroleum bioremediation -- 2.15.2 Bioaugmentation for petroleum bioremediation -- 2.16 Medical application -- 2.17 Cosmetics and personal care -- 2.18 Agriculture -- 2.19 Food industry -- 2.20 Regulatory concerns -- 2.21 Conclusion -- References -- Chapter Producer microorganisms and the metabolic engineering for biosurfactant production -- 3.1 Microbial sources of surfactants: introduction -- 3.2 Bacteria as biosurfactant producers -- 3.2.1 Examples of bacterial genera and species that produce biosurfactants -- 3.2.2 Advantages and disadvantages of bacterial biosurfactant producers -- 3.3 Yeasts as biosurfactant producers -- 3.3.1 Examples of yeast genera and species that produce biosurfactants -- 3.3.2 Advantages and disadvantages of yeast biosurfactant producers -- 3.4 Fungi as biosurfactant producers -- 3.4.1 Examples of fungal genera and species that produce biosurfactants -- 3.4.2 Advantages and disadvantages of fungal biosurfactant producers -- 3.5 Metabolic engineering for biosurfactant production -- 3.5.1 Principles of metabolic engineering -- 3.5.2 Strategies for biosurfactant production using metabolic engineering -- 3.6 Advances in metabolic engineering for biosurfactant production -- 3.7 Conclusions -- References. 327 $aChapter Kinetics of microbial growth and biosurfactant production -- 4.1 Kinetics of microbial growth -- 4.1.1 Growth curve phases -- 4.1.2 Factors affecting microbial growth -- 4.2 Kinetics of biosurfactant production -- 4.2.1 Biosurfactant production process -- 4.2.2 Biosurfactant production kinetics -- 4.2.3 Factors affecting biosurfactant production -- 4.3 Measurement of microbial growth and biosurfactant production -- 4.3.1 Optical density (OD) measurement -- 4.3.2 Colony count method -- 4.3.3 Dry weight measurement -- 4.3.4 Surface tension measurement -- 4.4 Application of microbial growth and biosurfactant production -- 4.4.1 Industrial application -- 4.4.2 Environmental applications -- 4.4.3 Medical and pharmaceutical applications -- 4.5 Conclusion -- References -- Chapter Bioreactors for biosurfactant production and downstream processing surfactant extraction -- 5.1 Introduction -- 5.1.1 Bioreactors for biosurfactant production -- 5.1.2 Downstream processing for surfactant extraction -- 5.2 Types of bioreactors for biosurfactant production -- 5.2.1 Stirred tank bioreactors -- 5.2.2 Application in biosurfactant production -- 5.2.3 Membrane bioreactors -- 5.2.4 Bubble column bioreactors -- 5.2.5 Packed bed bioreactors -- 5.3 Downstream processing for surfactant extraction -- 5.3.1 Centrifugation -- 5.3.2 Filtration -- 5.3.3 Precipitation -- 5.3.4 Extraction with solvents -- 5.4 Conclusion and future perspectives -- References -- Chapter Microbial surfactants from waste resources -- 6.1 Introduction -- 6.1.1 Importance of microbial surfactants -- 6.1.2 Sources of waste resources for microbial surfactants production -- 6.2 Microorganisms for microbial surfactants production from waste resources -- 6.2.1 Bacteria -- 6.2.2 Yeasts -- 6.3 Types of waste resources from microbial surfactants production -- 6.3.1 Agriculture waste. 327 $a6.3.2 Industrial waste -- 6.3.3 Municipal waste -- 6.4 Production and purification of microbial surfactants from waste resources -- 6.4.1 Production process -- 6.4.2 Purification process -- 6.5 Applications of microbial surfactants from waste resources -- 6.5.1 Bioremediation -- 6.5.2 Agriculture -- 6.5.3 Cosmetics and personal care products -- 6.5.4 Food industry -- 6.5.5 Pharmaceuticals -- 6.5.6 Enhanced oil recovery -- 6.6 Challenges and future prospects -- 6.6.1 Challenges -- 6.6.2 Scale-up -- 6.6.3 Future prospects -- 6.7 Conclusion -- References -- Chapter Microbial surfactants in soil remediation -- 7.1 Introduction -- 7.2 Mechanisms of soil remediation using microbial surfactants -- 7.2.1 Emulsification -- 7.2.2 Dispersion -- 7.2.3 Solubilization -- 7.2.4 Mobilization -- 7.3 Factors affecting the effectiveness of microbial surfactants in soil remediation -- 7.3.1 Contaminant type and concentration -- 7.3.2 Surfactant type and concentration -- 7.3.3 Soil characteristics -- 7.3.4 Microbial activity -- 7.3.5 Environmental conditions -- 7.3.6 Surfactant persistence -- 7.3.7 Surfactant toxicity -- 7.3.8 Hydraulic conditions -- 7.3.9 Regulatory and safety considerations -- 7.4 Applications of microbial surfactants in soil remediation -- 7.4.1 Bioremediation of hydrocarbons -- 7.4.2 Bioremediation of heavy metals -- 7.4.3 Bioremediation of pesticides -- 7.4.4 Bioremediation of explosives -- 7.5 Limitations of using microbial surfactants in soil remediation -- 7.6 Conclusion -- References -- Chapter Microbial surfactants in water remediation -- 8.1 Introduction -- 8.2 Mechanisms of water remediation using microbial surfactants -- 8.2.1 Emulsification -- 8.2.2 Dispersion -- 8.2.3 Solubilization -- 8.2.4 Mobilization -- 8.3 Factors affecting the effectiveness of microbial surfactants in water remediation -- 8.3.1 pH -- 8.3.2 Temperature. 327 $a8.3.3 Salinity -- 8.3.4 Types of contaminants and their concentration -- 8.4 Applications of microbial surfactants in water remediation -- 8.4.1 Bioremediation of hydrocarbons -- 8.4.2 Bioremediation of heavy metals -- 8.4.3 Bioremediation of pesticides -- 8.4.4 Bioremediation of explosives -- 8.5 Advantages and limitations of using microbial surfactants in water remediation. -- 8.6 Conclusion -- Conflict of interest -- Acknowledgments -- References -- Chapter Microbial surfactants in food, pharmaceuticals, and agriculture -- 9.1 Introduction: microbial surfactants in food, pharmaceuticals, and agriculture -- 9.2 Microbial surfactants in food -- 9.2.1 Types of microbial surfactants used in the food industry -- 9.3 Applications of microbial surfactants in food processing and preservation -- 9.3.1 Microbial surfactants as emulsifiers, foaming agents, and antiadhesive agents in food industry -- 9.3.2 Safety and regulatory considerations of using microbial surfactants in food -- 9.3.3 Microbial surfactants in pharmaceuticals -- 9.4 Types of microbial surfactants used in the pharmaceutical industry -- 9.4.1 Antimicrobial activity -- 9.4.2 Modulation of cell surface properties -- 9.5 Applications of microbial surfactants in drug delivery and formulation -- 9.5.1 Microbial surfactants as solubilizing agents, emulsifiers, and stabilizers in the pharmaceutical industry -- 9.5.2 Safety and regulatory considerations of using microbial surfactants in pharmaceuticals -- 9.6 Microbial surfactants in agriculture -- 9.6.1 Types of microbial surfactants used in agriculture -- 9.6.2 Applications of microbial surfactants in crop protection and soil remediation -- 9.7 Commercialization and future outlook -- 9.7.1 Market trends and opportunities for microbial surfactants -- 9.8 Conclusion -- References. 327 $aChapter Potential applications of biosurfactants in the biomedical field. 330 $aA compact derivation of the fundamental physics of piezoelectricity and its applications in classical ultrasonic sensor and actuator systems as well as modern systems where atomistic effects and piezoelectricity together play important roles. 410 0$aIOP Ebooks Series 606 $aStrains and stresses$7Generated by AI 606 $aPiezoelectricity$7Generated by AI 615 0$aStrains and stresses 615 0$aPiezoelectricity 676 $a537.2446 700 $aWillatzen$b Morten$0875544 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 912 $a9911009250803321 996 $aPiezoelectricity in Classical and Modern Systems$94396118 997 $aUNINA