LEADER 00955nam a22002411i 4500 001 991002852389707536 005 20040407152726.0 008 040624s1963 gw |||||||||||||||||ger 035 $ab12987712-39ule_inst 035 $aARCHE-094539$9ExL 040 $aDip.to Beni Culturali$bita$cA.t.i. Arché s.c.r.l. Pandora Sicilia s.r.l. 082 04$a937 100 1 $aWosnik, Bernhard$0487616 245 10$aUntersuchungen zur Geschichte Sullas :$binaugural-Dissertation ... /$cvorgelegt von Bernhard Wosnik 260 $aWürzburg :$b[s.n.],$c1963 300 $aIX, 125 p. ;$c21 cm 651 4$aRoma antica$xStoria$ySec. 1. a.C. 907 $a.b12987712$b02-04-14$c12-07-04 912 $a991002852389707536 945 $aLE001 SR II 81$g1$i2001000033546$lle001$nC. 1$o-$pE0.00$q-$rl$s- $t0$u0$v0$w0$x0$y.i13592324$z12-07-04 996 $aUntersuchungen zur Geschichte Sullas$9284097 997 $aUNISALENTO 998 $ale001$b12-07-04$cm$da $e-$fger$ggw $h0$i1 LEADER 07650nam 22008173 450 001 9911009166103321 005 20250523181839.0 010 $a9780750336062 010 $a0750336064 010 $a9780750336079 010 $a0750336072 024 7 $a10.1088/978-0-7503-3607-9 035 $a(CKB)5600000000000442 035 $a(CaBNVSL)thg00082509 035 $a(OCoLC)1259501151 035 $a(IOP)9780750336079 035 $a(MiAaPQ)EBC31253123 035 $a(Au-PeEL)EBL31253123 035 $a(OCoLC)1429741787 035 $a(EXLCZ)995600000000000442 100 $a20250523d2021 uy 0 101 0 $aeng 135 $aurcn||||m|||a 181 $2rdacontent 182 $2isbdmedia 183 $2rdacarrier 200 10$aPhysics of the Lorentz group $ebeyond high-energy physics and optics /$fSibel Baskal, Young S. Kim, Marilyn E. Noz. 205 $aSecond edition. 210 1$aBristol [England] (Temple Circus, Temple Way, Bristol BS1 6HG, UK) :$cIOP Publishing,$d[2021] 215 $a1 online resource (various pagings) $cillustrations (some color) 225 1 $aIOP ebooks 300 $a"Version: 20210205"--Title page verso. 311 08$a9780750336086 311 08$a0750336080 311 08$a9780750336055 311 08$a0750336056 320 $aIncludes bibliographical references and index. 327 $a1. Lorentz group and its representations -- 1.1. Generators of the Lorentz group -- 1.2. Two-by-two representation of the Lorentz group -- 1.3. Conformal representation of the Lorentz group -- 1.4. Representations of the Poincare? group -- 1.5. Representations of the Lorentz group based on harmonic oscillators -- 1.6. Wigner functions for the Lorentz group 327 $a2. Wigner's little groups for internal space-time symmetries -- 2.1. Euler decomposition of Wigner's little group -- 2.2. O(3)-like little group for massive particles -- 2.3. E(2)-like little group for massless particles -- 2.4. O(2, 1)-like little group for imaginary-mass particles -- 2.5. Further properties of Wigner's little groups -- 2.6. Little groups in the light-cone coordinate system 327 $a3. Group contractions -- 3.1. Contraction with squeeze transformations -- 3.2. Contractions of the O(3) rotation group -- 3.3. Contraction of the O(2, 1) Lorentz group -- 3.4. Contraction of the Lorentz group -- 3.5. Tangential spheres 327 $a4. Two-by-two representations of Wigner's little groups -- 4.1. Transformation properties of the energy-momentum four-vector -- 4.2. Two-by-two representations of Wigner's little groups -- 4.3. Lorentz completion of the little groups -- 4.4. Bargmann and Wigner decompositions -- 4.5. Conjugate transformations -- 4.6. One little group with three branches -- 4.7. Classical damped harmonic oscillator 327 $a5. Relativistic spinors and polarization of photons and neutrinos -- 5.1. Two-component spinors -- 5.2. Massive and massless particles -- 5.3. Dirac spinors and massless particles -- 5.4. Polarization of massless neutrinos -- 5.5. Scalars, vectors, tensors, and the polarization of photons 327 $a6. Lorentz-covariant harmonic oscillators -- 6.1. Dirac's plan to construct Lorentz-covariant quantum mechanics -- 6.2. Dirac's forms of relativistic dynamics -- 6.3. Running waves and standing waves -- 6.4. Little groups for relativistic extended particles -- 6.5. Further properties of covariant oscillator wave functions -- 6.6. Lorentz contraction of harmonic oscillators -- 6.7. Feynman's rest of the Universe 327 $a7. Quarks and partons in the Lorentz-covariant world -- 7.1. Lorentz-covariant quark model -- 7.2. Feynman's parton picture -- 7.3. Proton structure function -- 7.4. Proton form factor and Lorentz coherence -- 7.5. Coherence in energy-momentum space -- 7.6. Hadronic temperature and boiling quarks 327 $a8. Wigner functions and their symmetries -- 8.1. Symmetries and the uncertainty principle in the Wigner phase space -- 8.2. Four-dimensional phase space -- 8.3. Canonical transformations -- 8.4. SL(4, r) symmetry -- 8.5. Dirac matrices for O(3, 3) -- 8.6. O(3, 3) symmetry 327 $a9. Coupled harmonic oscillators and squeezed states of light -- 9.1. Coupled oscillators -- 9.2. Lorentz-covariant oscillators -- 9.3. Squeezed states of light -- 9.4. Further notes on squeezed states -- 9.5. O(3, 2) symmetry from Dirac's coupled oscillators -- 9.6. Canonical and non-canonical transformations from the coupled oscillators -- 9.7. Entropy and the expanding Wigner phase space 327 $a10. Special relativity from quantum mechanics? -- 10.1. Definition of the problem -- 10.2. Symmetries of the single oscillator -- 10.3. Symmetries from two oscillators -- 10.4. Contraction of O(3, 2) to the inhomogeneous Lorentz group 327 $a11. Lorentz group in ray optics -- 11.1. The group of ABCD matrices applied to ray optics -- 11.2. Equi-diagonalization of the ABCD matrix -- 11.3. Decomposition of the ABCD matrix -- 11.4. Laser cavities -- 11.5. Composition of lens and translation matrices -- 11.6. Optical beam propagation through multilayers -- 11.7. Camera optics 327 $a12. Polarization optics -- 12.1. Jones vectors -- 12.2. Squeeze transformation and phase shift -- 12.3. Rotation of the polarization axes -- 12.4. The SL(2, c) group content of polarization optics -- 12.5. Optical activities -- 12.6. Correspondence to space-time symmetries -- 12.7. More optical filters from E(2)-like groups 327 $a13. Poincare? sphere -- 13.1. Decoherence in polarization optics -- 13.2. Coherency matrix -- 13.3. Poincare? sphere -- 13.4. Two concentric Poincare? spheres -- 13.5. Symmetries derivable from the Poincare? sphere -- 13.6. O(3, 2) symmetry for energy couplings -- 13.7. Entropy problem 327 $aAppendix A. Physics as art of synthesis -- A.1. Illustration of Hume, Kant, and Hegel -- A.2. Kant and Einstein -- A.3. Kantianism and Taoism -- A.4. Einstein and Hegel. 330 3 $aThis book explains the Lorentz group in a language familiar to physicists, namely in terms of two-by-two matrices. While the three-dimensional rotation group is one of the standard mathematical tools in physics, the Lorentz group applicable to the four-dimensional Minkowski space is still very strange to most physicists. However, it plays an essential role in a wide swathe of physics and is becoming the essential language for modern and rapidly developing fields. The first edition was primarily based on applications in high-energy physics developed during the latter half of the 20th Century, and the application of the same set of mathematical tools to optical sciences. In this new edition, the authors have added five new chapters to deal with emerging new problems in physics, such as quantum optics, information theory, and fundamental issues in physics including the question of whether quantum mechanics and special relativity are consistent with each other, or whether these two disciplines can be derived from the same set of equations. 410 0$aIOP ebooks. 606 $aLorentz groups 606 $aRotation groups 606 $aMathematical physics 615 0$aLorentz groups. 615 0$aRotation groups. 615 0$aMathematical physics. 676 $a512/.2 700 $aBaskal$b Sibel$01775266 702 $aKim$b Y. S. 702 $aNoz$b Marilyn E. 712 02$aInstitute of Physics (Great Britain), 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9911009166103321 996 $aPhysics of the Lorentz group$94415634 997 $aUNINA