LEADER 09676nam 22005413 450 001 9911008994203321 005 20231130080229.0 010 $a9789815136562 010 $a9815136569 035 $a(MiAaPQ)EBC30975742 035 $a(Au-PeEL)EBL30975742 035 $a(CKB)29089779500041 035 $a(Exl-AI)30975742 035 $a(OCoLC)1411306650 035 $a(DE-B1597)730281 035 $a(DE-B1597)9789815136562 035 $a(Perlego)4304359 035 $a(EXLCZ)9929089779500041 100 $a20231130d2023 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aMolecular and Physiological Insights into Plant Stress Tolerance and Applications in Agriculture 205 $a1st ed. 210 1$aSharjah :$cBentham Science Publishers,$d2023. 210 4$dİ2023. 215 $a1 online resource (235 pages) 311 08$aPrint version: Chen, Jen-Tsung Molecular and Physiological Insights into Plant Stress Tolerance and Applications in Agriculture Sharjah : Bentham Science Publishers,c2023 327 $aCover -- Title -- Copyright -- End User License Agreement -- Contents -- Foreword -- Preface -- List of Contributors -- Influence of Abiotic Stress on Molecular Responses of Flowering in Rice -- Chanchal Kumari1, Shobhna Yadav1 and Ramu S. Vemanna1,* -- 1. INTRODUCTION -- 1.1. Receptor for Light and Temperature -- 1.2. Reproduction and Maintenance of Shoot Apical Meristem -- 1.3. Molecular Mechanisms of Flowering -- 1.4. Adaptation of Rice to Different Climatic Conditions -- 1.5. Development Made at Molecular Level to Combat Abiotic Stress in Plants -- CONCLUSION -- REFERENCE -- A Peep into the Tolerance Mechanism and the Sugar Beet Response to Salt Stress -- Varucha Misra1,* and Ashutosh Kumar Mall1 -- 1. INTRODUCTION -- 1.1. Characteristics of Halophytes for Salt Stress Condition -- 1.2. Salt Stress Tolerance Mechanism in Sugar Beet -- 1.3. Salt Overly Sensitive (SOS) Pathway for Salt Tolerance -- 1.4. The Response of Sugar Beet under Salt Stress -- CONCLUSION -- REFERENCES -- The Role of Functional Genomics to Fight the Abiotic Stresses for Better Crop Quality and Production -- Neha Sharma1,*, Bharti Choudhary1 and Nimisha Sharma2 -- 1. INTRODUCTION -- 1.1. The Use of Functional Genomics in Studying Plant Physiology under Abiotic Stresses -- 1.1.1. Microarrays and MicroRNAs -- 1.1.2. Serial Analysis of Gene Expression (SAGE) -- 1.1.3. RNA Sequencing -- 1.1.4. RNAi -- 1.1.5. CRISPR/Cas9 -- 1.1.6. Tilling and ECO Tilling -- CONCLUSION -- REFERENCES -- Genetic Enhancement for Salt Tolerance in Rice -- Morphological and Physiological Responses of Plants Under Temperature Stress and Underlying Mechanisms -- Asma Shakeel1,*, Syed Andleeba Jan1, Shakeel A Mir2, Z. Mehdi1, Inayat M. Khan1 and Mehnaz Shakeel1 -- 1. INTRODUCTION -- 2. TEMPERATURE STRESS -- 3. PLANT RESPONSES TO HIGH TEMPERATURE (HT) STRESS: AN OVERVIEW -- 3.1. Germination Stage. 327 $a3.2. Photosynthesis -- 3.3. Reproductive Growth -- 3.4. Transpiration -- 3.5. Water Relation -- 3.6. Oxidative Stress -- 3.7. Yield -- 4. MITIGATION STRATEGIES FOR HIGH-TEMPERATURE STRESS -- 4.1. The Function of Modified Membrane in Heat Tolerance -- 4.2. The Function of Antioxidative Defense in Heat Tolerance -- 4.3. The Function of Heat Stress Proteins (Hsps) in Heat Tolerance -- 4.4. The Function of Exogenous Phyto-protectants in Heat Tolerance -- 4.5. Genetic Engineering Approach For Heat Tolerance -- 5. PLANT RESPONSE TO LOW-TEMPERATURE STRESS: AN OVERVIEW -- 5.1. Chilling Injury -- 5.2. Cytological Changes Caused by Chilling Injury -- 5.3. Physiological Changes Caused by Chilling Injury -- 5.4. Water Regimes -- 5.5. Mineral Nutrition -- 5.6. Respiration Rate -- 5.7. Photosynthesis Rate -- 6. MECHANISM FOR CHILLING TOLERANCE -- 6.1. Thermal Effect -- 6.2. Chemical Treatment -- 6.3. Cellular and Genetic Engineering -- 6.4. Freezing Injury -- 7. MECHANISM FOR FREEZING TOLERANCE -- 7.1. Adaptation -- 7.2. Avoidance -- 7.3. Tolerance -- CONCLUSION -- REFERENCES -- Molecular Studies and Metabolic Engineering of Phytohormones for Abiotic Stress Tolerance -- Sekhar Tiwari1 and Ravi Rajwanshi2,* -- 1. INTRODUCTION -- 2. PHYTOHORMONES MEDIATED ABIOTIC STRESS TOLERANCE -- 2.1. Abscisic Acid (ABA) -- 2.2. Auxins (IAA) -- 2.3. Cytokinins (CKs) -- 2.4. Ethylene (ET) -- 2.5. Gibberellins (GAs) -- 2.6. Brassinosteroids (BRs) -- 2.7. Jasmonates (JAs) -- 2.8. Salicylic Acid (SA) -- 2.9. Strigolactones (SL) -- 3. MOLECULAR STUDIES AND METABOLIC ENGINEERING OF PHYTOHORMONES -- CONCLUSION AND PERSPECTIVES -- REFERENCES -- Living with Abiotic Stress from a Plant Nutrition Perspective in Arid and Semi-arid Regions -- Nesreen H. Abou-Baker1,* -- 1. INTRODUCTION -- 2. BACKGROUND AND REVIEW OF LITERATURE -- 2.1. The Ecological Factors Related to Plant Production. 327 $a2.2. The Abiotic Stressors Under Arid And Semi-Arid Regions -- 2.2.1. Salinity -- 2.2.2. Drought -- 2.2.3. Heat -- 2.2.4. Pollution -- 2.2.5. The Impact of Abiotic Stressors on Plant -- 2.3. Ordinary Management and Rehabilitation of Soils and Plants under Stress -- 2.3.1. Soil Management -- 2.3.2. Water Management -- 2.3.3. Crop Management -- 2.4. Modern Techniques to Combate Abiotic Stress -- 2.4.1. Nano-technology -- 2.4.2. Intelligent-green Composites -- 2.4.3. Genetic Engineering -- 2.5. Economic Aspects -- 3. A FUTURE VISION/ CONCLUSION -- REFERENCES -- Understanding Molecular Mechanisms of Plant Physiological Responses Under Drought and Salt Stresses -- Abhishek Kanojia1, Ayushi Jaiswal1 and Yashwanti Mudgil1,* -- 1. INTRODUCTION -- 1.1. Signaling Mechanisms Under Salt Stress -- 1.2. Salt Stress Regulation in Plants -- 1.3. Signaling in Drought Stress -- 1.4. Pathways in Details -- 1.5. The Core ABA-Signalling Pathway -- 1.6. PP2C: Regulator of ABA Signalling in Plants -- 1.7. ABA Receptors -- 1.8. SnRK2 -- 1.9. ABA-Dependent Signalling Pathway -- 1.10. ABA-Independent Pathway -- 1.11. Early Osmotic Stress Signalling Pathway -- 1.12. Calcium Dependent Signalling -- 1.13. MAPK-mediated Signalling Pathway -- 1.14. Proteolysis -- 1.15. Phospholipid Signalling -- 1.16. ROS-mediated Signalling -- 1.17. Ethylene (ET) Signalling -- 1.18. Jasmonic Acid (JA) Signalling -- 1.19. Salicylic Acid (SA) Signalling -- 1.20. Brassinosteroids (BRs) Signalling -- CONCLUSION -- REFERENCES -- Salt Stress and its Mitigation Strategies for Enhancing Agricultural Production -- Priyanka Saha1,*, Jitendra Singh Bohra2, Anamika Barman1 and Anurag Bera2 -- 1. INTRODUCTION -- 2. BACKGROUND -- 3. PROBLEM SOILS AND THEIR FEATURES -- 3.1. Acid Soil -- 3.2. Salt-affected Soils -- 4. DIAGNOSTIC CRITERIA AND CLASSIFICATION -- 5. MANAGEMENT STRATEGIES. 327 $a5.1. Management Strategies for Reclaiming Acid Soil -- 5.2. Management Strategies for Reclaiming Sodic Soil -- 5.3. Management of Saline Soil -- CONCLUSION -- PATH AHEAD -- REFERENCES -- Impact of Heat Coupled with Drought Stress on Plants -- Battana Swapna1,*, Srinivasan Kameswaran1, Mandala Ramakrishna1 and Thummala Chandrasekhar2 -- 1. INTRODUCTION -- 1.1. Morpho-physiological Responses to Drought Coupled with Heat Stress -- 1.2. Plant Growth -- 1.3. Root System -- 1.4. Photosynthesis -- 1.5. Metabolites -- 1.6. Antioxidants -- 1.7. Yield -- 1.8. Molecular Responses to Heat Coupled with Drought Stress -- 1.9. New Approaches for Developing Tolerance to Heat Coupled with Drought Stress -- CONCLUSION AND FUTURE PERPSPECTIVES -- REFERENCES -- Subject Index -- Back Cover. 330 $aMolecular and Physiological Insights into Plant Stress Tolerance and Applications in Agriculture is an edited volume that presents research on plant stress responses at both molecular and physiological levels. Key Features: - Emphasizes the morphological and physiological reactions of plants and the underlying molecular mechanisms when faced with stress from environmental or pathogenic factors. - Explores microbial dynamics within the plant rhizosphere and the application of plant growth-promoting bacteria as biofertilizers and endophytes as biocontrol agents to enhance crop growth and productivity for sustainable agriculture. - Systematically summarizes molecular mechanisms in plant stress tolerance and discusses the current applications of biotechnology, nanotechnology, and precision breeding to obtain stress-tolerant crops, contributing to climate-smart agriculture and global food security. - Includes contributions and references from multidisciplinary experts in plant stress physiology, plant molecular biology, plant biotechnology, agronomy, agriculture, nanotechnology, and environmental science. The content of the book is aimed at addressing UN SDG goals 2, 12, and 15 to achieve zero hunger and responsible consumption and production, and to sustainable use of terrestrial ecosystems, respectively. This comprehensive resource is suitable for researchers, students, teachers, agriculturists, and readers in plant science, and allied disciplines. Readership: Researchers, students, teachers, agriculturists, and readers in plant science, and allied disciplines. 606 $aPlants$xEffect of stress on$7Generated by AI 606 $aPlant physiology$7Generated by AI 615 0$aPlants$xEffect of stress on 615 0$aPlant physiology 676 $a581.7 700 $aChen$b Jen-Tsung$01253370 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9911008994203321 996 $aMolecular and Physiological Insights into Plant Stress Tolerance and Applications in Agriculture$94394263 997 $aUNINA