LEADER 00801nam0-2200253---450 001 9911033876803321 005 20251028093351.0 100 $a20251027d1890----km-y0itay50------ba 101 0 $ager 102 $aDE 105 $aa-------001yy 200 1 $aElementare Mineralogie besonders zum Zwecke des Selbststudiums leicht fasslich dargestellt$fvon A. Kenngott 210 $aStuttgart$cWeisert$d1890 215 $a338 p.$cill.$d24 cm 610 0 $aMineralogia 676 $a549$v23$zita 700 1$aKenngott,$bAdolf$01739676 801 0$aIT$bUNINA$gREICAT$2UNIMARC 901 $aBK 912 $a9911033876803321 952 $aM 2 VI 24$b25788$fNAP14 959 $aNAP14 996 $aElementare Mineralogie besonders zum Zwecke des Selbststudiums leicht fasslich dargestellt$94448476 997 $aUNINA LEADER 03017nam 22007333 450 001 9911008429903321 005 20230803211329.0 010 $a9781483395388 010 $a1483395383 010 $a9781483354682 010 $a1483354687 010 $a9781483322575 010 $a1483322572 010 $a9781483311692 010 $a1483311694 035 $a(CKB)4330000000042190 035 $a(MiAaPQ)EBC7106712 035 $a(Au-PeEL)EBL7106712 035 $a(MiAaPQ)EBC31805092 035 $a(Au-PeEL)EBL31805092 035 $a(OCoLC)1341826387 035 $a(Perlego)4596079 035 $a(OCoLC)1240716956 035 $a(CaToSAGE)SAGE000019385 035 $a(MiAaPQ)EBC1994778 035 $a(Au-PeEL)EBL1994778 035 $a(OCoLC)958510402 035 $a(EXLCZ)994330000000042190 100 $a20221010d2014 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $2rdacontent 182 $2rdamedia 183 $2rdacarrier 200 10$aChanging Climate Politics $eU. S. Policies and Civic Action 205 $a1st ed. 210 1$aWashington DC :$cCQ Press,$d2014. 210 4$dİ2015. 215 $axv, 250 pages ;$d23 cm 300 $aIncludes index. 311 08$a9781452239972 311 08$a1452239975 320 $aIncludes bibliographical references and index. 327 $aCover Page -- Half Title -- Half Title -- Title -- Copyright -- contents -- Preface -- Selected Acronyms -- About the Contributors -- 1. Introduction: Global Climate Politics -- Part I. Changing Climate Policies in the United States -- 2. The Limits of National Climate Policy Making and the Role of the Courts -- 3. A New Era in States' Climate Policies? -- 4. Climate Policy Innovation in American Cities -- Part II. Civic Society and Climate Change -- 5. Explaining Public Conflict and Consensus on the Climate -- 6. The US National Climate Change Movement -- 7. Environmental Policies on the Ballot -- 8. Consumer Political Action on Climate Change -- 9. The Politics of Urgent Transition -- Index -- Advertisement. 330 $aChanging Climate Politics provides a comprehensive account of the current state of government action and political participation in the US on the issue of climate change. 517 $aChanging Climate Politics 606 $aClimatic changes$xPolitical aspects$zUnited States 606 $aEnvironmental policy$zUnited States 606 $aEnvironmentalism$zUnited States 607 $aUnited States$xEnvironmental conditions 607 $aUnited States$xPolitics and government 615 0$aClimatic changes$xPolitical aspects 615 0$aEnvironmental policy 615 0$aEnvironmentalism 676 $a363.738/745610973 700 $aWolinsky-Nahmias$b Yael$01827267 702 $aWolinsky-Nahmias$b Yael$f1960- 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9911008429903321 996 $aChanging Climate Politics$94395373 997 $aUNINA LEADER 04529nam 22005533 450 001 9911019636903321 005 20240321080236.0 010 $a9781394233953 010 $a1394233957 010 $a9781394233946 010 $a1394233949 035 $a(MiAaPQ)EBC31214512 035 $a(Au-PeEL)EBL31214512 035 $a(CKB)30967955600041 035 $a(OCoLC)1427496579 035 $a(OCoLC-P)1427496579 035 $a(CaSebORM)9781394233922 035 $a(Perlego)4363674 035 $a(OCoLC)1427662470 035 $a(EXLCZ)9930967955600041 100 $a20240321d2024 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aMetaheuristics for Machine Learning $eAlgorithms and Applications 205 $a1st ed. 210 1$aNewark :$cJohn Wiley & Sons, Incorporated,$d2024. 210 4$dİ2024. 215 $a1 online resource (342 pages) 225 1 $aArtificial Intelligence and Soft Computing for Industrial Transformation Series 311 08$a9781394233922 311 08$a1394233922 330 $aMETAHEURISTICS for MACHINE LEARNING The book unlocks the power of nature-inspired optimization in machine learning and presents a comprehensive guide to cutting-edge algorithms, interdisciplinary insights, and real-world applications. The field of metaheuristic optimization algorithms is experiencing rapid growth, both in academic research and industrial applications. These nature-inspired algorithms, which draw on phenomena like evolution, swarm behavior, and neural systems, have shown remarkable efficiency in solving complex optimization problems. With advancements in machine learning and artificial intelligence, the application of metaheuristic optimization techniques has expanded, demonstrating significant potential in optimizing machine learning models, hyperparameter tuning, and feature selection, among other use-cases. In the industrial landscape, these techniques are becoming indispensable for solving real-world problems in sectors ranging from healthcare to cybersecurity and sustainability. Businesses are incorporating metaheuristic optimization into machine learning workflows to improve decision-making, automate processes, and enhance system performance. As the boundaries of what is computationally possible continue to expand, the integration of metaheuristic optimization and machine learning represents a pioneering frontier in computational intelligence, making this book a timely resource for anyone involved in this interdisciplinary field. Metaheuristics for Machine Learning: Algorithms and Applications serves as a comprehensive guide to the intersection of nature-inspired optimization and machine learning. Authored by leading experts, this book seamlessly integrates insights from computer science, biology, and mathematics to offer a panoramic view of the latest advancements in metaheuristic algorithms. You'll find detailed yet accessible discussions of algorithmic theory alongside real-world case studies that demonstrate their practical applications in machine learning optimization. Perfect for researchers, practitioners, and students, this book provides cutting-edge content with a focus on applicability and interdisciplinary knowledge. Whether you aim to optimize complex systems, delve into neural networks, or enhance predictive modeling, this book arms you with the tools and understanding you need to tackle challenges efficiently. Equip yourself with this essential resource and navigate the ever-evolving landscape of machine learning and optimization with confidence. Audience The book is aimed at a broad audience encompassing researchers, practitioners, and students in the fields of computer science, data science, engineering, and mathematics. The detailed but accessible content makes it a must-have for both academia and industry professionals interested in the optimization aspects of machine learning algorithms. 410 0$aArtificial Intelligence and Soft Computing for Industrial Transformation Series 606 $aMachine learning 615 0$aMachine learning. 676 $a006.3/1 700 $aKalita$b Kanak$01841039 701 $aGanesh$b Narayanan$01841040 701 $aPa?lamurukan?$b Ca$01859660 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9911019636903321 996 $aMetaheuristics for Machine Learning$94464109 997 $aUNINA