LEADER 02989nam 22005775 450 001 9911007459903321 005 20260204160944.0 010 $a3-031-89707-2 024 7 $a10.1007/978-3-031-89707-8 035 $a(MiAaPQ)EBC32132159 035 $a(Au-PeEL)EBL32132159 035 $a(CKB)38986997500041 035 $a(DE-He213)978-3-031-89707-8 035 $a(EXLCZ)9938986997500041 100 $a20250527d2025 u| 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aMath for Data Science /$fby Omar Hijab 205 $a1st ed. 2025. 210 1$aCham :$cSpringer Nature Switzerland :$cImprint: Springer,$d2025. 215 $a1 online resource (588 pages) 311 08$a3-031-89706-4 327 $aPreface -- List of Figures -- Datasets -- Linear Geometry -- Principal Components -- Calculus -- Probability -- Statistics -- Machine Learning -- A. Auxiliary Material -- B. Auxiliary Files -- References -- Python Index -- Index. 330 $aMath for Data Science presents the mathematical foundations necessary for studying and working in Data Science. The book is suitable for courses in applied mathematics, business analytics, computer science, data science, and engineering. The text covers the portions of linear algebra, calculus, probability, and statistics prerequisite to Data Science. The highlight of the book is the machine learning chapter, where the results of the previous chapters are applied to neural network training and stochastic gradient descent. Also included in this last chapter are advanced topics such as accelerated gradient descent and logistic regression trainability. Clear examples are supported with detailed figures and Python code; Jupyter notebooks and supporting files are available on the author's website. More than 380 exercises and nine detailed appendices covering background elementary material are provided to aid understanding. The book begins at a gentle pace, by focusing on two-dimensional datasets. As the text progresses, foundational topics are expanded upon, leading to deeper results at a more advanced level. 606 $aMathematics 606 $aArtificial intelligence$xData processing 606 $aApplications of Mathematics 606 $aData Science 606 $aDades massives$2thub 606 $aMatemātica$2thub 606 $aAplicacions industrials$2thub 608 $aLlibres electrōnics$2thub 615 0$aMathematics. 615 0$aArtificial intelligence$xData processing. 615 14$aApplications of Mathematics. 615 24$aData Science. 615 7$aDades massives 615 7$aMatemātica 615 7$aAplicacions industrials 676 $a519 700 $aHijab$b O$058868 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9911007459903321 996 $aMath for Data Science$94389846 997 $aUNINA