LEADER 03714nam 22006855 450 001 9911007360703321 005 20250602130244.0 010 $a3-031-89121-X 024 7 $a10.1007/978-3-031-89121-2 035 $a(CKB)39160311100041 035 $a(MiAaPQ)EBC32145191 035 $a(Au-PeEL)EBL32145191 035 $a(DE-He213)978-3-031-89121-2 035 $a(EXLCZ)9939160311100041 100 $a20250602d2025 u| 0 101 0 $aeng 135 $aur||||||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aQuantum Photonics $eBimodes, Qubits, and Biphotons /$fby Bahaa E. A. Saleh 205 $a1st ed. 2025. 210 1$aCham :$cSpringer Nature Switzerland :$cImprint: Springer,$d2025. 215 $a1 online resource (488 pages) 225 1 $aGraduate Texts in Physics,$x1868-4521 311 08$a3-031-89120-1 327 $aChapter 1: Bimodal Systems -- Chapter 2: Optical Modes -- Chapter 3: Random Optical Modes -- Chapter 4: Quantum Bits -- Chapter 5: Quantum Information Processing -- Chapter 6: Photons -- Chapter 7: Single-Photon Optics -- Chapter 8: Biphoton Optics -- Chapter 9: Quantum Photonic Sensing. 330 $aThis book introduces classical modal optics and discrete quantum systems using a common mathematical approach based on linear vector spaces. It explores the three key elements of photonic quantum information: the optical bimode, the qubit, and the photon. Both the bimode and qubit are represented as vectors in a two-dimensional linear vector space, but the qubit distinguishes itself through unique properties linked to quantum measurement. While optical bimodes can be mutually coupled, qubits can be entangled, enabling revolutionary quantum information technologies. A single photon occupying a bimode encodes a qubit, facilitating cryptographic protocols for secure communication. When occupying two bimodes, a photon encodes two qubits, enabling local gates. A photon distributed across spatial modes encodes an image. Entangled photon pairs form two qubits, enabling quantum-state teleportation and quantum networks. Additionally, two photons with spatiotemporal modal entanglement form a biphoton, useful for quantum sensing and imaging with sensitivity surpassing classical limits. With numerous illustrations, examples, and exercises, the book is ideal for classroom teaching or self-study at the upper-level undergraduate or beginning graduate level. It also serves as an accessible introduction for readers interested in the foundational principles driving the second quantum revolution and its diverse applications in communication, computing, and metrology. 410 0$aGraduate Texts in Physics,$x1868-4521 606 $aOptics 606 $aMaterials 606 $aPhotonics 606 $aOptical engineering 606 $aQuantum computers 606 $aOptical materials 606 $aOptics and Photonics 606 $aPhotonic Devices 606 $aPhotonics and Optical Engineering 606 $aQuantum Computing 606 $aOptical Materials 615 0$aOptics. 615 0$aMaterials. 615 0$aPhotonics. 615 0$aOptical engineering. 615 0$aQuantum computers. 615 0$aOptical materials. 615 14$aOptics and Photonics. 615 24$aPhotonic Devices. 615 24$aPhotonics and Optical Engineering. 615 24$aQuantum Computing. 615 24$aOptical Materials. 676 $a535 700 $aSaleh$b Bahaa E. A$027250 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9911007360703321 996 $aQuantum Photonics$94390500 997 $aUNINA