LEADER 11682nam 22006373 450 001 9911007259803321 005 20250523181838.0 010 $a9789201241214 010 $a9201241216 010 $a9781523149841 010 $a1523149841 035 $a(CKB)5850000000320122 035 $a(NjHacI)995850000000320122 035 $a(MiAaPQ)EBC30589733 035 $a(Au-PeEL)EBL30589733 035 $a(OCoLC)1381708515 035 $a(EXLCZ)995850000000320122 100 $a20250523d2021 uy 0 101 0 $aeng 135 $aur||||||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 00$aBenefits and challenges of small modular fast reactors $eproceedings of a technical meeting /$fInternational Atomic Energy Agency 205 $a1st ed. 210 1$aVienna, Austria :$cInternational Atomic Energy Agency,$d2021. 215 $a1 online resource (351 pages) $cillustrations 225 1 $aIAEA TECDOC series,$x1011-4289 ;$vno. 1972 311 08$a9789201240217 311 08$a920124021X 320 $aIncludes bibliographical references. 327 $aIntro -- 1. INTRODUCTION -- 1.1. Background -- 1.2. Objective -- 1.3. Scope -- 1.4. Structure -- 2. SUMMARY OF MEETING SESSIONS -- 2.1. Session I: Sodium cooled fast SMRs -- 2.2. Session II: Heavy Liquid Metal COOLED FAST SMRS -- 2.3. Session III: Safety aspects of fast smrs -- 2.4. Session IV: Technology and Research in Support of SMR Development -- 3. SUMMARY OF GROUP DISCUSSIONS -- 3.1. Group Discussion I: In-factory construction -- 3.2. Group DIiscussion II: Technological challenges to be resolved -- 3.3. Group discussion III: Benefits of fast smrs including market needs -- 4. CONCLUSIONS AND RECOMMENDATIONS -- REFERENCES -- ABBREVIATIONS -- PAPERS PRESENTED AT THE MEETING -- SESSION I: SODIUM COOLED FAST SMRS -- LARGE-EDDY SIMULATION OF THERMALSTRIPING IN THE UPPER INTERNAL STRUCTURE OF THE PROTOTYPE GEN-IV SODIUM-COOLED FAST REACTOR: Detailed modelling and simulation with optimal flow region and integrated simulation with component simplification -- 1. Introduction -- 2. Large eddy simulation of THE upper internal structure -- 2.1. Preliminary simulation -- 2.2. Simulation setup and numerical methods for the LES of the UIS -- 3. integrated modelling and simulation of the entire PHTS for rvcs design -- 4. conclusion -- SMR CADOR: A SMALL SFR WITH INHERENT SAFETY FEATURES -- 1. Introduction -- 2. Context for Gen-IV SMR development -- 2.1. General interest in SMR -- 2.2. Gen-IV objectives -- 2.3. Inherent safety for Gen-IV SFR -- 2.3.1. Reactivity insertions -- 2.3.2. Decay heat removal -- 3. Objectives of the smr-cador -- 4. governing equations of the problem -- 5. Design of the decay heat removal system -- 6. Complete pre-design scheme -- 7. Pre-design options -- 8. Conclusions -- EVALUATION OF POTENTIAL SAFETY AND ECONOMIC BENEFITS AND CHALLENGES OF MODULAR SODIUM-COOLED FAST REACTORS -- 1. Introduction -- 2. Modular SFR and its features. 327 $a3. Analysis of influence of modular SFR safety characteristics on its economic indicators -- 3.1. Reactor core safety features -- 3.2. Reactor shutdown system -- 3.3. Decay heat removal system -- 3.4. Localizing safety system -- 3.5. Severe beyond-design basis accidents -- 3.5.1. Method for accounting of possible BDBA consequences in cost of electricity -- 3.5.2. Analysis of impact of BDBA conditions on specific cost of electricity -- 4. Recommendations on ways of improvement of modular SFR -- 5. Conclusion -- FEASIBILITY STUDY OF SMALL SODIUM COOLED FAST REACTORS -- 1. Introduction -- 2. Modular concept -- 2.1. Core design -- 2.2. Plant design -- 2.3. Economic evaluation -- 3. Non Refueling Concept -- 3.1. Core design -- 3.2. Plant design -- 3.3. Economic Evaluation -- 4. Conclusions -- A PRELIMINARY STUDY OF AUTONOMOUS AND ULTRA-LONG LIFE HYBRID MICRO-MODULAR REACTOR COOLED BY SODIUM HEAT PIPES -- 1. Introduction -- 2. Conceptual design of h-mmr core -- 3. Numerical results -- 4. conclusions and futureworks -- SESSION II: HEAVY LIQUID METAL COOLED FAST SMRS -- VALIDATION OF THERMAL HYDRAULIC DESIGN SUPPORT AND SAFETY METHODOLOGY AND APPLICATION SEALER -- 1. Introduction -- 2. Sealer -- 3. Validation efforts in support of later application to sealer -- 3.1. Validation for SPECTRA Simulations -- 3.1.1. ELSY and ALFRED code-to-code comparison -- 3.1.2. CIRCE experiments -- 3.2. Validation for CFD Simulations -- 3.2.1. CIRCE -- 3.2.2. E-SCAPE -- 4. Sealer Safety Analyses -- 4.1. SPECTRA Model -- 4.2. UTOP Analysis -- 4.3. CFD Model -- 4.4. Steady State at Beginning-of-Life -- 4.5. Core Support Analysis -- 5. Conclusions and outlook -- LFR-SMR: AFFORDABLE SOLUTIONS FOR MULTIPLE NEEDS -- 1. Introduction -- 2. The LFR-AS-200 -- 2.1. Description of the LFR-AS-200 -- 2.2. Performance of the LFR-AS-200. 327 $a2.2.1. The LFR-AS-200 version nearly self-sustaining in Pu -- 2.2.2. The LFR-AS-200 as a Pu burner -- 3. The micro LFR-TL -- 4. Potential deployment of LFR at different power levels -- 5. Conclusion -- INHERENT SELF-PROTECTION, PASSIVE SAFETY AND COMPETITIVNESS OF SMALL POWER MODULAR FAST REACTOR SVBR-100 -- 1. Introduction -- 2. Inherent self-protection and passive safety of SVBR-100 -- 2.1. Reactor self-protection against loss of coolant type accident -- 2.2. Coolant compatibility with working medium in the secondary circuit and fuel -- 2.3. Self-protection against accidents with SG tube rapture -- 2.4. Reactor self-protection against loss of heat sink, unprotected loss of heat sink (ULOHS) type accidents -- 2.5. Passive protection against reactivity accidents and unprotected transient over power type accidents -- 2.6. Passive protection against unprotected loss-of-flow type accidents -- 2.7. Radio-ecological safety -- 2.8. Self-Protection against unauthorized "freezing" of LBE in the reactor -- 2.9. Defence-in-Depth Barriers -- 2.10. Tolerance to extreme initial events -- 3. Competitiveness of NPPs based on reactors SVBR-100 -- 4. R& -- D key results to subtantiate the reactor SVBR-100 project -- 5. Conclusion -- CLFR-300, AN INNOVATIVE LEAD-COOLED FAST REACTOR BASED ON NATURAL-DRIVEN SAFETY TECHNOLOGIES -- 1. Introduction -- 2. conceptural desing OF CLFR-300 -- 2.1. General description -- 2.2. Reactor core -- 2.3. Primary system and related auxiliary systems -- 2.4. Safety systems -- 3. natural-driven safety technology and its implementations in CLFR-300 -- 3.1. Definition of natural-driven safety technology -- 3.2. NDS technology implementations in CLFR-300 -- 3.2.1. Natural-driven shutdown system (NDSS) -- 3.2.2. Natural-driven decay heat removal system (NDDHRS) -- 4. Conclusions. 327 $aCONCEPTUAL DESIGN OF CHINA LEAD Cooled MINI-REACTOR CLEAR-M10D -- 1. Introduction -- 2. China lead cooled reactor development strategy -- 3. Design description of CLEAR-M10d -- 3.1. Core design -- 3.1.1. Reactor core design -- 3.1.2. Fuel element design -- 3.1.3. Thermal hydraulics design -- 3.2. Reactor System design -- 3.2.1. Key components design -- 3.2.2. Engineering safety features -- 3.3. Heat and Power Cogeneration System -- 4. Conclusion -- LEAD FAST REACTOR TECHNOLOGY: A PROMISING OPTION FOR SMR APPLICATION -- 1. Introduction -- 2. Compliance of the LFR to the SMR concept -- 2.1. Technology-specific features -- 2.1.1. Neutronics -- 2.1.2. Physics and chemistry -- 2.2. SMR-specific features -- 2.2.1. Plant integration -- 2.2.2. Flexibility -- 2.2.3. Simplicity, compactness and sharing -- 3. A commercial SM-LFR -- 4. Challenges to deployment and role of ALFRED -- 5. Conclusions -- PRELIMINARY CONCEPTUAL DESIGN OF LEAD-COOLED SMALL FAST REACTOR CORE FOR ICEBREAKER -- 1. Introduction -- 2. Computer codes -- 2.1. Fast reactor analysis code system ARC -- 2.2. Monte Carlo code MCS -- 3. The design strategy of the conceptual core -- 3.1. Core design requirements and primary parameters -- 3.2. Pin design parameter -- 3.3. Core configurations -- 3.4. Optimization of the conceptual core -- 4. Performance analyses -- 4.1. Neutronic performance -- 4.2. Thermal-hydraulic performance -- 4.3. Control rod worth and reactivity feedback coefficients -- 4.4. Integral reactivity parameters for quasi-static reactivity balance -- 5. Conclusion -- SEALER-UK: a 55 MW(E) LEAD COOLED REACTOR FOR COMMERCIAL POWER PRODUCTION -- 1. Introduction -- 2. Plant, fuel and core designL -- 3. Safety -- 3.1. Safety performance -- 4. Economic performance -- 5. Conclusions -- SESSION III: SAFETY ASPECTS OF FAST SMRS. 327 $aEXPERIENCE IN THE PHYSICS DESIGN AND SAFETYANALYSIS OF SMALL AND MEDIUM SIZED FBR CORES -- 1. Introduction -- 2. Calculation scheme and reference cores -- 3. Core physics parameters - a comparison -- 4. Response to unprotected loss of flow accident (ULOF) -- 5. Conclusion -- INNOVATIVE MODELLING APPROACHES FOR MOLTEN SALT SMALL MODULAR REACTORS -- 1. INTRODUCTION -- 2. THE INVESTIGATED SYSTEM -- 3. THE MODELLING APPROACH -- 3.2. Thermal-hydraulics model -- 3.3. Neutronics model -- 4. ANALYSIS OF THE VOID REACTIVITY EFFECT -- 5. ANALYSIS OF FUEL COMPRESSIBILITY EFFECTS -- 6. CONCLUSIONS -- NUMERICAL ASSESMENT OF SODIUM FIRE INCIDENT -- 1. Introduction -- 2. Numerical models in sphincs -- 2.1. Pool combustion model -- 2.2. Chemical reaction and recombination ratio of hydrogen -- 2.3. Water vapor release from concrete -- 3. Numerical investigation of sodium pool fire incident -- 3.1. Numerical condition -- 3.2. Result and Discussion -- 3.2.1. No water vapor release from concrete -- 3.2.2. Water vapor release from concrete -- 4. Challenges in SMR -- 5. Conclusion -- ALFRED PROTECTED LOSS OF FLOW ACCIDENT EXPERIMENT IN CIRCE FACILITY -- 1. Introduction -- 2. Circe-hero experimental test PLOFA #1 -- 2.1. Facility description -- 2.2. Experimental test PLOFA #1 description -- 2.3. Experimental results -- 3. Simulation activity -- 3.1. Steady state results -- 3.2. Transient results -- 4. Conclusions -- A PASSIVE SAFETY DEVICE FOR SFRS WITH POSITIVE COOLANT TEMPERATURE COEFFICIENT -- 1. Introduction -- 2. Description of FAST -- 3. Reference cores -- 4. ATWS analyses -- 4.1. ULOF -- 4.2. ULOHS -- 4.3. UTOP -- 5. Conclusions and future works -- SESSION IV: TECHNOLOGY AND RESEARCH IN SUPPORT OF SMR DEVELOPMENT -- MYRRHA TECHNOLOGY AND RESEARCH FACILITIES IN SUPPORT OF HEAVY LIQUID METAL SMR FAST REACTORS -- 1. Introduction -- 2. Applicability of MYRRHA r&. 327 $ad facilities. 330 $aThe IAEA usually defines smal and medium sized or modular reactors (SMRs) as reactors producing up to 300 MW(e) (small sized or small modular) and reactors producing 300-700 MW(e) (medium sized). There has been increasing interest in SMRs globally owing applications, enhanced safety resulting from inherent passive safety features, reduced upfront capital investment and possibilities for cogeneration and ono-electrical applications. At the same time, SMRs face various technical and economic challenges to their development and wide-scale deployment. 410 0$aaIAEA-TECDOC ;$vno. 1972. 606 $aNuclear reactors 606 $aFast reactors$xSafety measures. 606 $aSodium cooled reactors 606 $aLiquid metal cooled reactors 615 0$aNuclear reactors. 615 0$aFast reactors$xSafety measures. 615 0$aSodium cooled reactors. 615 0$aLiquid metal cooled reactors. 676 $a621.483 712 02$aInternational Atomic Energy Agency, 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9911007259803321 996 $aBenefits and challenges of small modular fast reactors$94415409 997 $aUNINA LEADER 00765nas 2200277zu 450 001 9911056225303321 005 20260124141952.0 011 $a2753-5231 035 $a(CKB)45004199600041 035 $a(EXLCZ)9945004199600041 100 $a20260124cuuuuuuuu || | 101 0 $aeng 135 $aur||||||||||| 200 00$aSocial Policy Review 210 $aUnited Kingdom: $cPorcelain Publishing International Limited 311 08$a2515-4710 610 0$asocial policy 610 0$asocial governance 610 0$aanti-poverty 610 0$apopulation and pension policy 610 0$arural revitalization. 610 0$acommunity development 906 $aJOURNAL 912 $a9911056225303321 996 $aSocial Policy Review$93392534 997 $aUNINA