LEADER 01036nam0-22003611i-450- 001 990001434100403321 005 20130125123736.0 010 $a0-521-63303-6 035 $a000143410 035 $aFED01000143410 035 $a(Aleph)000143410FED01 035 $a000143410 100 $a20001205d1998----km-y0itay50------ba 101 0 $aeng 102 $aGB 200 1 $aString Theory$fJoseph Polchinski 210 $aCambridge$cCambridge University Press$d1998 215 $a2 v.$d26 cm 225 1 $aCambridge monographs on mathematical physics 327 1 $a1.: An introduction to the bosonic string$a2.: Superstring tehory and beyond 610 0 $aTeoria dei campi 610 0 $aTeoria dello scattering 610 0 $aTeoria dei molti corpi 676 $a530.143 700 1$aPolchinski,$bJoseph$061955 801 0$aIT$bUNINA$gRICA$2UNIMARC 901 $aBK 912 $a990001434100403321 952 $a22A-507$fFI1 952 $a22A-507.001$fFI1 959 $aFI1 996 $aString theory$9191116 997 $aUNINA LEADER 09018oam 22006132 450 001 9911007182603321 005 20230302095344.0 010 $a9781119849957 010 $a1119849950 010 $a9781119849964 010 $a1119849969 035 $a(CKB)4900000001302420 035 $a(OCoLC)1302330975 035 $a(OCoLC-P)1302330975 035 $a(CaSebORM)9781119849919 035 $a(Perlego)3244345 035 $a(MiAaPQ)EBC32194962 035 $a(Au-PeEL)EBL32194962 035 $a(OCoLC)1527722528 035 $a(EXLCZ)994900000001302420 100 $a20220228h20222022 uy 0 101 0 $aeng 135 $aur||||||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aDesign of mechanical elements $ea concise introduction to mechanical design considerations and calculations /$fProf. Bart Raeymaekers 205 $a1st ed. 210 1$aHoboken, NJ :$cWiley,$d2022. 210 4$dİ2022 215 $a1 online resource 300 $aIncludes index. 311 08$a9781119849919 311 08$a1119849918 327 $aCover -- Title Page -- Copyright -- Contents -- About the Author -- Preface -- About the Companion Site -- Chapter 1 Mechanical Design -- 1.1 Introduction -- 1.2 Mechanical Design Process -- 1.3 Mechanical Elements -- 1.4 Standards and Codes -- 1.5 Uncertainty in Mechanical Design -- 1.6 Design for Safety -- 1.7 Key Takeaways -- 1.8 Problems -- Chapter 2 Material Selection -- 2.1 Introduction -- 2.2 Material Classification -- 2.3 Mechanical Properties -- 2.3.1 Strength and Stiffness -- 2.3.2 Elastic Versus Plastic Strain -- 2.3.3 Resilience -- 2.3.4 Toughness -- 2.3.5 Engineering Stress-Strain Diagram Summary -- 2.3.6 True Stress-Strain Diagram -- 2.4 Materials Processing -- 2.4.1 Hot Versus Cold Processing -- 2.4.2 Hot Working -- 2.4.3 Cold Working -- 2.4.3.1 Process -- 2.4.3.2 Reduction in Area -- 2.4.3.3 Cold Work Factor -- 2.4.3.4 Modifying Material Properties Using Cold Work -- 2.5 Alloys -- 2.5.1 Numbering Systems -- 2.5.2 Plain Carbon Steels -- 2.5.3 Alloy Steels -- 2.6 Key Takeaways -- 2.7 Problems -- Chapter 3 Statistical Considerations -- 3.1 Introduction -- 3.2 Random Variables and Distributions -- 3.3 Density Functions -- 3.3.1 Probability Density Function -- 3.3.2 Cumulative Density Function -- 3.4 Metrics to Describe a Distribution -- 3.5 Linear Combination of Random Variables -- 3.6 Types of Distributions -- 3.6.1 Uniform Distribution -- 3.6.2 Normal Distribution -- 3.6.3 Weibull Distribution -- 3.7 Key Takeaways -- 3.8 Problems -- Chapter 4 Tolerances -- 4.1 Introduction -- 4.2 Terminology -- 4.3 Preferred Fits and Tolerances -- 4.3.1 ISO 286 Method -- 4.3.2 Unit Shaft and Unit Hole System -- 4.4 Tolerance Stacks -- 4.5 Key Takeaways -- 4.6 Problems -- Chapter 5 Design for Static Strength -- 5.1 Introduction -- 5.2 Simple Loading -- 5.2.1 Axial Loading -- 5.2.2 Bending -- 5.2.3 Torsion -- 5.3 Stress Concentrations. 327 $a5.4 Failure Criteria -- 5.4.1 Failure Criteria for Ductile Materials -- 5.4.1.1 Maximum Normal Stress Theory (Rankine) -- 5.4.1.2 Maximum Shear Stress Theory (Tresca) -- 5.4.1.3 Distortion Energy Theory (Von Mises) -- 5.4.1.4 Comparison Between Different Failure Criteria -- 5.4.2 Failure Criteria for Brittle Materials -- 5.4.2.1 Maximum Normal Stress Theory (Rankine) -- 5.4.2.2 Coulomb-Mohr Theory -- 5.4.2.3 Comparison Between Different Failure Criteria -- 5.5 Key Takeaways -- 5.6 Problems -- Chapter 6 Design for Fatigue Strength -- 6.1 Introduction -- 6.1.1 Types of Dynamic Loads -- 6.1.2 Fatigue Failure Mechanism -- 6.2 Fatigue?life Methods -- 6.3 Fatigue Strength -- 6.4 Endurance?limit Modifying Factors -- 6.4.1 ka: Surface Factor -- 6.4.2 kb: Size Factor -- 6.4.3 kc: Load Factor -- 6.4.4 kd: Temperature Factor -- 6.4.5 ke: Reliability Factor -- 6.4.6 kf: Miscellaneous Effects Factor -- 6.5 Fluctuating Stresses -- 6.6 Stress Concentrations -- 6.7 Key Takeaways -- 6.8 Problems -- Chapter 7 Shafts -- 7.1 Introduction -- 7.1.1 Practical Considerations Related to Shaft Design -- 7.1.2 Torque Transmission -- 7.1.2.1 Relationship Between Torque, Power, and RPM -- 7.1.2.2 Belt-Pulley Torque Transmission -- 7.2 Recipe for Shaft Calculations -- 7.2.1 Design Calculation -- 7.2.2 Verification Calculation -- 7.3 Example Calculations -- 7.4 Critical Rotation Frequency of a Shaft -- 7.5 Key Takeaways -- 7.6 Problems -- Chapter 8 Bolted Joints -- 8.1 Introduction -- 8.2 Power Screws -- 8.2.1 Screw Thread Nomenclature and Geometry -- 8.2.2 Power Screw Torque -- 8.2.3 Self?locking -- 8.2.4 Efficiency of a Power Screw -- 8.2.5 Collar Friction -- 8.3 Fasteners -- 8.3.1 Screw Thread Nomenclature and Geometry -- 8.3.2 Fastener Strength Category -- 8.3.3 Bolt Preload -- 8.3.4 Hexagonal Nuts -- 8.3.5 Washers -- 8.3.6 Torque Requirement. 327 $a8.3.7 Bolted Joints in Tension (Static) -- 8.3.7.1 Determining the Preload Fi -- 8.3.7.2 Stiffness of the Bolt -- 8.3.7.3 Stiffness of the Members -- 8.3.7.4 Stiffness of Members with a Gasket -- 8.3.8 Bolted Joints in Tension (Dynamic) -- 8.3.9 Bolted Joints in Shear -- 8.4 Key Takeaways -- 8.5 Problems -- Chapter 9 Welded Joints -- 9.1 Introduction -- 9.1.1 Welding Versus Brazing -- 9.1.2 Techniques and Materials -- 9.2 Welded Joint Geometry -- 9.3 Calculation of Welded Joints -- 9.3.1 Butt Welded Joints -- 9.3.2 Simple Loading of Unidirectional Fillet Welded Joints -- 9.3.2.1 Case 1: Axial Load -- 9.3.2.2 Case 2: Longitudinal Load -- 9.3.2.3 Case 3: Transverse Load -- 9.3.2.4 Case 4: In?plane Bending Moment -- 9.3.2.5 Case 5: Out?of?plane Bending Moment -- 9.3.2.6 Case 6: Torque Moment -- 9.3.3 Combined Loading of Unidirectional Fillet Welded Joints -- 9.3.4 Multidirectional Fillet Welded Joints -- 9.3.4.1 Multidirectional Fillet Welded Joints with In?plane Load, No Bending -- 9.3.4.2 Multidirectional Fillet Welded Joints with In?plane Load and Bending -- 9.3.4.3 Multidirectional Fillet Welded Joints with Torque Moment -- 9.4 Key Takeaways -- 9.5 Problems -- Chapter 10 Rolling Element Bearings -- 10.1 Introduction -- 10.1.1 Definition -- 10.1.2 Terminology and Geometry -- 10.1.3 Design Parameters -- 10.2 Types of Rolling Element Bearings -- 10.3 Hertz Contact Stress -- 10.3.1 Hertz Contact Stress Between Spherical Bodies -- 10.3.2 Hertz Contact Stress Between Cylindrical Bodies -- 10.4 Bearing Calculations -- 10.4.1 Bearing Life -- 10.4.2 Bearing Load -- 10.4.3 Bearing Reliability -- 10.4.4 Combined Radial and Axial Loading -- 10.5 Key Takeaways -- 10.6 Problems -- Chapter 11 Gears -- 11.1 Introduction -- 11.1.1 Types of Gears -- 11.1.2 Terminology -- 11.2 Conjugate Gear Tooth Action -- 11.3 Kinematics -- 11.3.1 Involute -- 11.3.2 Contact Ratio. 327 $a11.3.3 Gear Tooth System -- 11.3.4 Interference -- 11.4 Gear Force Analysis -- 11.5 Gear Manufacturing -- 11.5.1 Forming -- 11.5.2 Machining -- 11.6 Key Takeaways -- 11.7 Problems -- A Area Moment of Inertia -- A.1 Introduction -- A.2 Terminology -- A.3 Parallel Axis Theorem -- A.4 Rotation About the Origin -- B Internal Force Diagrams -- B.1 Cantilever Beam with End Load -- B.2 Cantilever Beam with Intermediate Load -- B.3 Simple Supported Beam with Center Load -- B.4 Simple Supported Beam with Intermediate Load -- C Elementary Stress Element -- C.1 Introduction -- C.2 Principal Stresses -- C.3 Maximum Shear Stress -- Index -- EULA. 330 $a"Design of Mechanical Elements provides a basic introduction to mechanical design considerations and calculations without overwhelming students with extraneous information. Developed for readers who are encountering the topic for the first time, the book is divided into three parts: the first covers basic design techniques and concepts such as material selection, statistical considerations, tolerances, and safety factors; the second part covers the strength of materials in the context of the design of mechanical elements, including simple and dynamic loading problems; and the third part combines the techniques covered in previous chapters to explain the design of common mechanical elements like shafts, bolted joints, welded joints, bearings, and gears. Each chapter opens with an overview of key terminology followed by an explanation of the underlying physics involved with the mechanical design problems that will be covered in the chapter. Best procedures for solving each problem are discussed and illustrated with worked examples and end-of-chapter practice problems"--$cProvided by publisher. 606 $aMachine design 606 $aMachine-tools$xDesign 606 $aEngineering design 615 0$aMachine design. 615 0$aMachine-tools$xDesign. 615 0$aEngineering design. 676 $a621.8/15 700 $aRaeymaekers$b Bart$01825239 712 02$aJohn Wiley & Sons, 801 0$bOCoLC-P 801 1$bOCoLC-P 906 $aBOOK 912 $a9911007182603321 996 $aDesign of mechanical elements$94392771 997 $aUNINA