LEADER 05886nam 22005533 450 001 9911007123803321 005 20230606080245.0 010 $a1-83724-438-3 010 $a1-5231-5541-8 010 $a1-83953-741-8 035 $a(MiAaPQ)EBC30564942 035 $a(Au-PeEL)EBL30564942 035 $a(OCoLC)1381708703 035 $a(NjHacI)9926821644500041 035 $a(BIP)089623074 035 $a(CKB)26821644500041 035 $a(EXLCZ)9926821644500041 100 $a20230606d2023 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aIntelligent Control of Medium and High Power Converters 205 $a1st ed. 210 1$aStevenage :$cInstitution of Engineering & Technology,$d2023. 210 4$dİ2023. 215 $a1 online resource (185 pages) 225 1 $aEnergy Engineering Series 311 08$a1-83953-740-X 320 $aIncludes bibliographical references and index. 327 $aIntro -- Title -- Copyright -- Contents -- About the editors -- Preface -- 1 Power electronics converters-an overview -- 1.1 Introduction -- 1.2 DC-DC converters -- 1.2.1 Non-isolated DC-DC converters -- 1.2.2 Isolated DC-DC converters -- 1.2.3 Resonant converters -- 1.3 DC-AC converters -- 1.3.1 Two-level single-phase and three-phase inverters -- 1.3.2 Classification of two-level three-phase inverters -- 1.3.3 Multilevel inverters -- 1.3.4 Review of a novel proposed MLIs -- 1.4 Conclusion -- References -- 2 Sliding mode control of bidirectional DC-DC converter for EVs -- 2.1 Introduction -- 2.2 Sliding mode control of bidirectional DC-DC converter -- 2.2.1 Modeling of the converter -- 2.2.2 Choice of sliding surface -- 2.2.3 Derivation of control law -- 2.2.4 Derivation of existence and stability conditions -- 2.2.5 Sliding mode parameter selection using HHO algorithm -- 2.3 Simulation and experimental verifications -- 2.4 Conclusion -- References -- 3 High-gain DC-DC converter with extremum seeking control for PV application -- 3.1 Introduction -- 3.2 System description -- 3.2.1 Photovoltaic array -- 3.2.2 Suggested high-gain DC-DC converter -- 3.3 Proposed AESC technique -- 3.3.1 Line search-based optimization methods -- 3.3.2 Control scheme -- 3.3.3 Extremum seeking control approach -- 3.3.4 Convergence analysis of the AESC approach -- 3.4 Simulation and comparison results -- 3.4.1 Scenario 1 -- 3.4.2 Scenario 2 -- 3.5 Conclusion -- References -- 4 A control scheme to optimize efficiency of GaN-based DC-DC converters -- 4.1 Introduction -- 4.2 Proposed control scheme -- 4.3 Simulation and experimental verification -- 4.4 Conclusions -- References -- 5 Control design of grid-connected three-phase inverters -- 5.1 Introduction -- 5.2 Inverter topologies -- 5.2.1 Grid forming inverters -- 5.2.2 Grid following inverters -- 5.3 Control strategies. 327 $a5.3.1 Control architecture of GFL inverters -- 5.3.2 PLL -- 5.3.3 Power controller -- 5.3.4 Current controller -- 5.4 Results and discussion -- 5.4.1 Real-time co-simulation testbed -- 5.4.2 Power hardware-in-loop testbed -- 5.5 Conclusion -- References -- 6 Sliding mode control of a three-phase inverter -- 6.1 Introduction -- 6.2 Modeling description and control of the inverter -- 6.2.1 Mathematical model of the DC/AC converter -- 6.2.2 Proposed SMA -- 6.3 SMA for performance improvement of WPS fed by VSI -- 6.3.1 Modeling description of the WECS -- 6.3.2 SMA of the rectifier and MPP tracking approach -- 6.4 Simulation and evaluation of performance -- 6.5 Conclusions -- References -- 7 Sliding-mode control of a three-level NPC grid-connected inverter -- 7.1 Introduction -- 7.2 Three-phase grid-connected NPC inverter -- 7.3 Reaching law in SMC -- 7.3.1 Sliding surface design -- 7.4 Super twisting SMC -- 7.4.1 Control design -- 7.4.2 Stability of the super twisting SMC -- 7.5 Results and discussion -- 7.6 Conclusion -- References -- 8 Neuro control of grid-connected three-phase inverters -- 8.1 Introduction -- 8.2 System description -- 8.3 Control design -- 8.3.1 Neural network approximation -- 8.3.2 Neuro sliding mode control design -- 8.4 Simulation results -- 8.5 Conclusion -- References -- 9 Low switching frequency operation of multilevel converters for high-power applications -- 9.1 Introduction -- 9.2 Selective harmonic minimization problem formulation -- 9.3 Solving techniques -- 9.3.1 Numerical techniques -- 9.3.2 Algebraic methods -- 9.3.3 Intelligent algorithms -- 9.4 Results and discussion -- 9.5 Comparative analysis -- 9.6 Conclusion and future work -- References -- 10 Comparison and overview of power converter control methods -- 10.1 Introduction -- 10.2 Nonlinear controllers for power converters -- 10.2.1 Sliding mode. 327 $a10.2.2 Model predictive control -- 10.3 Intelligent controllers for power converter -- 10.3.1 Fuzzy logic controller (FLC) -- 10.3.2 Artificial neural network -- 10.3.3 Metaheuristic optimization -- 10.4 Comparative performance analysis -- 10.5 Conclusion -- References -- Index. 330 $aPower converters are vital for clean power, and so is their control. This book covers recent advances in converter control, comparing control methods for different converters. Chapters present control of DC-DC and AC-DC converters, for example using sliding mode and robust control. 410 0$aEnergy Engineering Series 606 $aElectric current converters 615 0$aElectric current converters. 676 $a621.3126 700 $aBendaoud$b Mohamed$01736269 701 $aMaleh$b Yassine$01734186 701 $aPadmanaban$b Sanjeevikumar$01751133 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9911007123803321 996 $aIntelligent Control of Medium and High Power Converters$94391361 997 $aUNINA