LEADER 01874oam 2200433zu 450 001 9910830939303321 005 20210807004638.0 010 $a1-118-66873-1 035 $a(CKB)3450000000004209 035 $a(SSID)ssj0000815200 035 $a(PQKBManifestationID)11512500 035 $a(PQKBTitleCode)TC0000815200 035 $a(PQKBWorkID)10805677 035 $a(PQKB)10887180 035 $a(NjHacI)993450000000004209 035 $a(PPN)189478799 035 $a(EXLCZ)993450000000004209 100 $a20160829d1989 uy 101 0 $aeng 135 $aur||||||||||| 181 $ctxt 182 $cc 183 $acr 200 10$aPetrology and Structure of Gneiss Anticlines near Baltimore, Maryland 210 31$a[Place of publication not identified]$cAmerican Geophysical Union$d1989 215 $a1 online resource (12 pages) $cillustrations 225 0 $aField trip guidebook (International Geological Congress (28th : 1989 : Washington, D.C.)), T204 ;$vT208 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a0-87590-585-4 330 $aPublished by the American Geophysical Union as part of the Field Trip Guidebooks Series, Volume 204. This field trip will focus on the petrology and structure of basement-cored anticlines in the central Appalachian Piedmont, near Baltimore, Maryland (Figure 1). These structures have long been interpreted as mantled gneiss domes in the sense of Eskola (1949). However, recent work suggests that they are recumbent nappes, arched by later folding about steeply dipping axial planes. 606 $aGneiss 615 0$aGneiss. 676 $a552.4 700 $aFisher$b George W$0993128 801 0$bPQKB 906 $aBOOK 912 $a9910830939303321 996 $aPetrology and Structure of Gneiss Anticlines near Baltimore, Maryland$92274092 997 $aUNINA LEADER 06380nam 22004573 450 001 9911007113903321 005 20240212173723.0 010 $z1-5231-4508-0 010 $a1-56990-841-9 035 $a(CKB)4100000011984948 035 $a(MiAaPQ)EBC6665665 035 $a(Au-PeEL)EBL6665665 035 $a(OCoLC)1259588955 035 $a(NjHacI)994100000011984948 035 $a(EXLCZ)994100000011984948 100 $a20210901h20212021 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aExtrusion blow molding /$fMichael Thielen 210 1$aMunich :$cHanser,$d2021. 210 4$d©2021. 215 $a1 online resource (207 pages) 311 $a1-56990-840-0 327 $aIntro -- Preface -- The Author -- Contents -- 1 Introduction -- 1.1 Hollow Plastic Parts - What Are They for? -- 1.2 Processes to Produce Hollow Plastic Parts -- 1.2.1 Thermoplastics -- 1.2.2 Thermosets -- 1.3 Application Areas for Blow Molded Hollow Parts -- 1.4 History of Blow Molding Hollow Parts -- 2 Extrusion Blow Molding -- 2.1 Process Sequence for Extrusion Blow Molding -- 2.2 Raw Materials -- 2.2.1 Plastics -- 2.2.2 Plastics for Extrusion Blow Molding -- 2.3 Machine Technology -- 2.3.1 Basic Structure of a Blow Molding Machine -- 2.3.2 Extruders and Screws -- 2.3.2.1 Smooth-Bore Extruder -- 2.3.2.2 Extruder with Grooved Feed Zone -- 2.3.2.3 Gravimetric Throughput Control -- 2.3.3 Parison Heads -- 2.3.3.1 Spider Heads -- 2.3.3.2 Mandrel Heads -- 2.3.3.3 Spiral Heads -- 2.3.4 Continuous/Discontinuous Extrusion -- 2.3.5 Wall Thickness Control -- 2.3.5.1 Swelling Behavior of the Parison -- 2.3.6 Systems for Influencing the Radial Wall Thickness Distribution -- 2.3.6.1 Why Radial Wall Thickness Control? -- 2.3.6.2 Statically Flexible Deformable Ring (SFDR®) -- 2.3.6.3 Partial Wall Thickness Distribution System (PWDS®) -- 2.3.6.4 Wall Thickness Layer Control -- 2.3.7 Clamping Units -- 2.3.8 Controls -- 2.3.8.1 IPC Control (Industrial PC) -- 2.3.9 Cooling -- 2.3.9.1 Shrinkage and Warpage -- 2.3.10 Air -- 2.3.11 Single-/Multiple-Head Systems -- 2.3.11.1 Long Stroke Machines -- 2.3.12 Single/Double Station Machines -- 2.3.12.1 Combinations of the Two Principles -- 2.3.13 Rotary-Wheel Blow Molding Systems -- 2.4 Blow Molding Tools -- 2.4.1 Mold Layout -- 2.4.1.1 Prototype Molds in Cast Resin Construction -- 2.4.1.2 Prototype Molds with Metal Surface and Cast Resin Backing -- 2.4.1.3 Cast Metal Prototype Molds -- 2.4.1.4 Aluminum Prototype Molds -- 2.4.1.5 Mass-Production Molds -- 2.4.2 Design Guidelines -- 2.4.2.1 Blow Mold Guide. 327 $a2.4.2.2 Cutting Edges -- 2.4.2.3 Mold Support -- 2.4.2.4 Mold Venting -- 2.4.3 Blow Mold Cooling -- 2.4.3.1 Drilled Cooling -- 2.4.3.2 Milled Cooling -- 2.4.3.3 Cast-in Pipe Cooling -- 2.4.4 Blow Mold Accessories -- 2.4.4.1 Masks -- 2.4.4.2 Spreader Pins -- 2.4.4.3 Blow Pin -- 2.4.4.4 Calibration Pin and Calibration Blow Pin -- 2.4.4.5 Blow Needle -- 2.4.4.6 Parison Closing Device -- 2.4.4.7 Stripper Plate -- 2.4.4.8 Head Tool (Die and Core) -- 2.4.4.9 Set-up Socket -- 2.4.5 Process-Integrated Follow-up Procedures -- 2.4.5.1 Post-Cooling with a Post-Cooling Mold -- 2.4.5.2 Complete Processing in the Blow Molding Machine -- 2.4.6 Injection Blow Molding and Dip Blow Molding -- 2.4.7 Use of Computers in Blow Mold Construction -- 2.5 Downstream and Auxiliary Equipment -- 2.5.1 Cooling Units -- 2.5.2 Compressors -- 2.5.3 Dryer -- 2.5.4 Deflashing -- 2.5.5 Grinder -- 2.5.6 Material Handling -- 2.5.7 Post-Cooling -- 2.5.8 Leak Test -- 2.5.9 Filling -- 2.5.10 Capping/Closing -- 2.5.11 Labeling -- 2.5.12 Printing -- 2.5.13 Packaging -- 2.5.14 Further Peripheral Devices -- 2.6 Special Process Variants -- 2.6.1 Multilayer/Coextrusion Blow Molding -- 2.6.1.1 Coextrusion with Barrier Layer -- 2.6.1.2 Machine Technology for Multilayer/Coextrusion -- 2.6.1.3 Plastic Fuel Tank (PFT) -- 2.6.2 Sheet Forming for the Production of Fuel Tanks -- 2.6.3 3D Blow Molding -- 2.6.3.1 Different Machine Technologies -- 2.6.3.2 3D Blow Molding and Coextrusion with Barrier Layer -- 2.6.3.3 Radial Wall Thickness Control -- 2.6.4 Sequential Coextrusion -- 2.6.4.1 Process Technology of Sequential Coextrusion -- 2.6.4.2 Machine Technology of Sequential Coextrusion -- 2.6.4.3 Production Target: Stable Processing Conditions -- 2.6.5 Extrusion Blow Molding of Polycarbonate Water Bottles -- 2.6.5.1 Advantages of PC -- 2.6.5.2 Machine Technology for PC Water Bottles. 327 $a2.6.6 In-Mold Labeling -- 2.6.7 View Stripe Equipment -- 2.6.8 In-Mold Decoration -- 2.6.9 Blow Molding Foam Technology (BFT) -- 2.6.10 MuCell -- 2.6.11 Blow Molding of Fiber-Reinforced Thermoplastics -- 2.6.12 Blow-Fill-Seal Process -- 3 Product Development -- 3.1 Product Trials and Testing -- 3.2 Designing for Blow Molding -- 3.3 CAE, Simulation Procedures: Process and Product Simulation -- 3.4 Product Development in Extrusion Blow Molding -- 3.5 Feasibility Analysis Sandbox -- 3.6 Calculation of the Internal Burst Pressure of a Windshield Wiper Water Tank -- 4 The Blow Molding Operation -- 4.1 From the Idea to the Product -- 4.2 Changeover -- 4.3 Layout of a Blow Molding Process -- 5 Recycling in Extrusion Blow Molding Technology -- 5.1 Possible Strategies for Processing Regrind -- 5.2 Layer Structures for Blow Molded Parts with Recycled Material -- 5.3 Recycling in Six-Layer Coextrusion -- 5.4 Preparation of the Material -- 5.5 Material Conveying, Dosing, and Plastification -- 5.6 Mass Flow Rate -- 5.7 Avoiding Defects -- 5.8 Blow Head, Blow Mold, and Blow Molding Process -- Appendix: Formula Symbols, Abbreviations, and Short Codes -- Index -- Leere Seite. 330 $aThis unique book covers the wide spectrum of extrusion blow-molded hollow bodies, which find application in packaging, storage, transport or channeling of liquids or bulk materials. 606 $aExtrusion blow molding 615 0$aExtrusion blow molding. 676 $a668.412 700 $aThielen$b Michael$01822837 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9911007113903321 996 $aExtrusion blow molding$94389237 997 $aUNINA