LEADER 04809nam 22007573u 450 001 9911007086003321 005 20230802010932.0 010 $a9780486134895 010 $a048613489X 010 $a9781621986447 010 $a1621986446 035 $a(CKB)2550000001186569 035 $a(EBL)1894782 035 $a(SSID)ssj0001002789 035 $a(PQKBManifestationID)12449627 035 $a(PQKBTitleCode)TC0001002789 035 $a(PQKBWorkID)11016247 035 $a(PQKB)11721683 035 $a(MiAaPQ)EBC1894782 035 $a(Au-PeEL)EBL1894782 035 $a(CaONFJC)MIL565940 035 $a(OCoLC)898421370 035 $a(Perlego)110822 035 $a(EXLCZ)992550000001186569 100 $a20141222d2012|||| u|| | 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aVectors, Tensors and the Basic Equations of Fluid Mechanics 205 $a1st ed. 210 $aNewburyport $cDover Publications$d2012 215 $a1 online resource (606 p.) 225 1 $aDover Books on Mathematics 300 $aDescription based upon print version of record. 311 08$a9780486661100 311 08$a0486661105 311 08$a9781306346894 311 08$a1306346894 327 $aDOVER BOOKS ON MATHEMATICS; Title Page; Copyright Page; Dedication; Preface; Table of Contents; 1 - Introduction; 1.1. Mathematical theories and engineering science; 1.2. Scalars, vectors, and tensors; 1.3. Preview; BIBLIOGRAPHY; 2 - Cartesian Vectors and Tensors: Their Algebra; 2.11. Definition of a vector; 2.12. Example of vectors; 2.13. Scalar multiplication; 2.21. Addition of vectors - Coplanar vectors; 2.22. Unit vectors; 2.23. A basis of non-coplanar vectors; 2.31. Scalar product - Orthogonality; 2.32. Vector product; 2.33. Velocity due to rigid body rotation 327 $a2.34. Triple scalar product2.35. Triple vector product; 2.36. Reciprocal base systems; 2.41. Second order tensors; 2.42. Examples of second order tensors; 2.43. Scalar multiplication and addition; 2.44. Contraction and multiplication; 2.45. The vector of an antisymmetric tensor; 2.5. Canonical form of a symmetric tensor; 2.61. Higher order tensors; 2.62. The quotient rule; 2.7. Isotropic tensors; 2.81. Dyadics and other notations; 2.82. Axial vectors; BIBLIOGRAPHY; 3 - Cartesian Vectors and Tensors: Their Calculus; 3.11. Tensor functions of a time-like variable; 3.12. Curves in space 327 $a4.12. Streamlines4.13. Streaklines; 4.21. Dilatation; 4.22. Reynolds' transport theorem; 4.3. Conservation of mass and the equation of continuity; 4.41. Deformation and rate of strain; 4.42. Physical interpretation of the deformation tensor; 4.43. Principal axes of deformation; 4.5. Vorticity, vortex lines, and tubes; 5 - Stress in Fluids; 5.11. Cauchy's stress principle and the conservation of momentum; 5.12. The stress tensor; 5.13. The symmetry of the stress tensor; 5.14. Hydrostatic pressure; 5.15. Principal axes of stress and the notion of isotropy; 5.21. The Stokesian fluid 327 $a5.22. Constitutive equations of the Stokesian fluid5.23. The Newtonian fluid; 5.24. Interpretation of the constants ? and ?; 6 - Equations of Motion and Energy in Cartesian Coordinates; 6.11. Equations of motion of a Newtonian fluid; 6.12. Boundary conditions; 6.13. The Reynolds number; 6.14. Dissipation of energy by viscous forces; 6.2. Equations for a Stokesian fluid; 6.3. The energy equation; 6.41. Re?sume? of the development of the equations; 6.42. Special cases of the equations; 6.51. Bernoulli theorems; 6.52. Some further properties of barotropic flow; 7 - Tensors 327 $a7.11. Coordinate systems and conventions 330 $a