LEADER 04444nam 22007213u 450 001 9911007078403321 005 20230802010913.0 010 $a9780486134680 010 $a0486134687 010 $a9781621986324 010 $a1621986322 035 $a(CKB)2550000001186511 035 $a(EBL)1894799 035 $a(SSID)ssj0001002736 035 $a(PQKBManifestationID)12489502 035 $a(PQKBTitleCode)TC0001002736 035 $a(PQKBWorkID)11016505 035 $a(PQKB)10452345 035 $a(MiAaPQ)EBC1894799 035 $a(Au-PeEL)EBL1894799 035 $a(CaONFJC)MIL565882 035 $a(OCoLC)868272603 035 $a(Perlego)110847 035 $a(EXLCZ)992550000001186511 100 $a20141222d2012|||| u|| | 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aIntroduction to Analysis 205 $a1st ed. 210 $aNewburyport $cDover Publications$d2012 215 $a1 online resource (455 p.) 225 1 $aDover Books on Mathematics 300 $aDescription based upon print version of record. 311 08$a9780486650388 311 08$a0486650383 311 08$a9781306346313 311 08$a1306346312 327 $aCover; Title Page; Copyright Page; Preface; Contents; Chapter I. Notions from Set Theory; 1. Sets and elements. Subsets; 2. Operations on sets; 3. Functions; 4. Finite and infinite sets; Problems; Chapter II. The Real Number System; 1. The field properties; 2. Order; 3. The least upper bound property; 4. The existence of square roots; Problems; Chapter III. Metric Spaces; 1. Definition of metric space. Examples; 2. Open and closed sets; 3. Convergent sequences; 4. Completeness; 5. Compactness; 6. Connectedness; Problems; Chapter IV. Continuous Functions 327 $a 1. Definition of continuity. Examples 2. Continuity and limits; 3. The continuity of rational operations. Functions with values in En; 4. Continuous functions on a compact metric space; 5. Continuous functions on a connected metric space; 6. Sequences of functions; Problems; Chapter V. Differentiation; 1. The definition of derivative; 2. Rules of differentiation; 3. The mean value theorem; 4. Taylor's theorem; Problems; Chapter VI. Riemann Integration; 1. Definitions and examples; 2. Linearity and order properties of the integral; 3. Existence of the integral 327 $a 4. The fundamental theorem of calculus 5. The logarithmic and exponential functions; Problems; Chapter VII. Interchange of Limit Operations; 1. Integration and differentiation of sequences of functions; 2. Infinite series; 3. Power series; 4. The trigonometric functions; 5. Differentiation under the integral sign; Problems; Chapter VIII. The Method of Successive Approximations; 1. The fixed point theorem; 2. The simplest case of the implicit function theorem; 3. Existence and uniqueness theorems for ordinary differential equations; Problems 327 $aChapter IX. Partial Differentiation 1. Definitions and basic properties; 2. Higher derivatives; 3. The implicit function theorem; Problems; Chapter X. Multiple Integrals; 1. Riemann integration on a closed interval in En. Examples and basic properties; 2. Existence of the integral. Integration on arbitrary subsets of En. Volume; 3. Iterated integrals; 4. Change of variable; Problems; Suggestions for Further Reading; Index 330 $a