LEADER 04436nam 22007453u 450 001 9911006991103321 005 20230801220303.0 010 $a9780486134826 010 $a0486134822 010 $a9781621986348 010 $a1621986349 035 $a(CKB)1000000000014238 035 $a(EBL)1894784 035 $a(SSID)ssj0001002756 035 $a(PQKBManifestationID)12489503 035 $a(PQKBTitleCode)TC0001002756 035 $a(PQKBWorkID)11014887 035 $a(PQKB)10820133 035 $a(MiAaPQ)EBC1894784 035 $a(Au-PeEL)EBL1894784 035 $a(CaONFJC)MIL570529 035 $a(OCoLC)869523845 035 $a(Perlego)1443565 035 $a(EXLCZ)991000000000014238 100 $a20141222d2012|||| u|| | 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aNumerical Methods for Scientists and Engineers 205 $a1st ed. 210 $aNewburyport $cDover Publications$d2012 215 $a1 online resource (1209 p.) 225 1 $aDover Books on Mathematics 300 $aDescription based upon print version of record. 311 08$a9781306392785 311 08$a1306392780 311 08$a9780486652412 311 08$a0486652416 327 $aCover; Title Page; Copyright Page; Dedication; Contents; Preface; I Fundamentals and Algorithms; 1 An Essay on Numerical Methods; 2 Numbers; 3 Function Evaluation; 4 Real Zeros; 5 Complex Zeros; 6 Zeros of Polynomials; 7 Linear Equations and Matrix Inversion; 8 Random Numbers; 9 The Difference Calculus; 10 Roundoff; 11 The Summation Calculus; 12 Infinite Series; 13 Difference Equations; II Polynomial Approximation-Classical Theory; 14 Polynomial Interpolation; 15 Formulas Using Function Values; 16 Error Terms; 17 Formulas Using Derivatives; 18 Formulas Using Differences 327 $a19 Formulas Using the Sample Points as Parameters20 Composite Formulas; 21 Indefinite Integrals-Feedback; 22 Introduction to Differential Equations; 23 A General Theory of Predictor-Corrector Methods; 24 Special Methods of Integrating Ordinary Differential Equations; 25 Least Squares: Theory; 26 Orthogonal Functions; 27 Least Squares: Practice; 28 Chebyshev Approximation: Theory; 29 Chebyshev Approximation: Practice; 30 Rational Function Approximation; III Fourier Approximation-Modern Theory; 31 Fourier Series: Periodic Functions; 32 Convergence of Fourier Series 327 $a33 The Fast Fourier Transform34 The Fourier Integral: Nonperiodic Functions; 35 A Second Look at Polynomial Approximation-Filters; 36 Integrals and Differential Equations; 37 Design of Digital Filters; 38 Quantization of Signals; IV Exponential Approximation; 39 Sums of Exponentials; 40 The Laplace Transform; 41 Simulation and the Method of Zeros and Poles; V Miscellaneous; 42 Approximations to Singularities; 43 Optimization; 44 Linear Independence; 45 Eigenvalues and Eigenvectors of Hermitian Matrices; N + 1 The Art of Computing for Scientists and Engineers; Bibliography; Index 330 $a Numerical analysis is a subject of extreme interest to mathematicians and computer scientists, who will welcome this first inexpensive paperback edition of a groundbreaking classic text on the subject. In an introductory chapter on numerical methods and their relevance to computing, well-known mathematician Richard Hamming (""the Hamming code,"" ""the Hamming distance,"" and ""Hamming window,"" etc.), suggests that the purpose of computing is insight, not merely numbers. In that connection he outlines five main ideas that aim at producing meaningful numbers that will be read and used, but wil 410 0$aDover Books on Mathematics 606 $aEngineering mathematics 606 $aNumerical analysis 606 $aNumerical analysis$xData processing 606 $aEngineering & Applied Sciences$2HILCC 606 $aApplied Mathematics$2HILCC 615 4$aEngineering mathematics. 615 4$aNumerical analysis. 615 0$aNumerical analysis$xData processing. 615 7$aEngineering & Applied Sciences 615 7$aApplied Mathematics 676 $a620.001/518 676 $a620.001518 700 $aHamming$b Richard$01824247 801 0$bAU-PeEL 801 1$bAU-PeEL 801 2$bAU-PeEL 906 $aBOOK 912 $a9911006991103321 996 $aNumerical Methods for Scientists and Engineers$94391354 997 $aUNINA