LEADER 04527nam 22006255 450 001 9911010528003321 005 20250616134656.0 010 $a3-031-81017-1 024 7 $a10.1007/978-3-031-81017-6 035 $a(CKB)39331731700041 035 $a(MiAaPQ)EBC32157310 035 $a(Au-PeEL)EBL32157310 035 $a(OCoLC)1524423917 035 $a(DE-He213)978-3-031-81017-6 035 $a(EXLCZ)9939331731700041 100 $a20250616d2025 u| 0 101 0 $aeng 135 $aur||||||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aGeoconservation and Geotourism Potential of India /$fedited by Satish C. Tripathi, Naresh Chandra Pant, Sameeta Rajora 205 $a1st ed. 2025. 210 1$aCham :$cSpringer Nature Switzerland :$cImprint: Springer,$d2025. 215 $a1 online resource (233 pages) 225 1 $aSociety of Earth Scientists Series,$x2194-9212 311 08$a3-031-81016-3 327 $aChapter 1. Geoconservation and Geotourism Potential of India -- Chapter 2. Unique Geoheritage Site of Lithified Quaternary Calcareous Parabolic Dunes and their Preservation in Southern Saurashtra, India -- Chapter 3. Lakes and Palaeolakes of Ladakh in Context of Geoheritage and Geotourism -- Chapter 4. Volcanology of Unique Geoheritage Sites in Deccan Region of Western India -- Chapter 5. Geoheritage Sites of the Paleo Saraswati River in northwestern India in the Context of Geotourism -- Chapter 6. Ladakh Batholith, Trans-Himalaya, India: Subduction Zone Magmatic Products and its Majestic Geoheritage Sites -- Chapter 7. A Sustainable Approach Towards Preservation of Geoheritage and Geodiversity: A Case Study of Patiya Village Cluster in Almora District of Uttarakhand -- Chapter 8. Geology and Geoheritage of One of the Oldest Remnant of Earth?s Crust: The Bundelkhand Craton, India -- Chapter 9. Deccan Volcanic Province: when Lava Flooded the Indian Peninsula -- Chapter 10. When Peninsular India Experienced First Marine Incursion ~290Ma Ago -- Chapter 11. Coprolites - Geological Signatures of Dietary Habits of Pre-historic Indian Vertebrates -- Chapter 12. Chitrakoot Region, Madhya Pradesh and Uttar Pradesh: A Potential UNESCO Global Geopark -- Chapter 13. Geotourism Potential of Quaternary Colluvio-Aeolian Deposits and Unique Parabolic Dunes Landscape in Central Thar Desert of India: Insights Into Geoheritage Sites Depicting Climatic Oscillations. 330 $aIndia is blessed with great geological diversity as it has recorded more than 3.5 billion year?s history of evolution of Earth, some of the sites/sections are unique to the globe. The recent discovery of youngest ?Meghalayan age? from a limestone cave of Meghalaya is internationally recognised. The Indian rock record bears the signatures of various global geological events including evolution of life, mass extinction, making of Himalaya, meteoritic impact craters etc. Indian dinosaur 'Rajasaurus' created curiosity in the children. Interestingly, large number of geoheritage sites are associated with well-known cultural heritage sites and biodiversity hotspots. However, proper scientific details of geoheritage sites and their potential to develop as a geotourism hotspot has not been discussed. Geotourism potential of India in extensive but so far it has not attracted attention of authorities and agencies of the Tourism sector. The present book provides a platform for them to plan and explore. Development of geotourism will lead to conservation of geoheritage sites and both financial and scientific aspects will be covered. 410 0$aSociety of Earth Scientists Series,$x2194-9212 606 $aGeology 606 $aGeomorphology 606 $aCultural property$xProtection 606 $aHistoric preservation 606 $aGeology 606 $aGeomorphology 606 $aConservation and Preservation 615 0$aGeology. 615 0$aGeomorphology. 615 0$aCultural property$xProtection. 615 0$aHistoric preservation. 615 14$aGeology. 615 24$aGeomorphology. 615 24$aConservation and Preservation. 676 $a551 700 $aTripathi$b Satish C$01828699 701 $aPant$b Naresh Chandra$01828700 701 $aRajora$b Sameeta$01828701 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9911010528003321 996 $aGeoconservation and Geotourism Potential of India$94397616 997 $aUNINA LEADER 07562nam 22005653 450 001 9911006717303321 005 20231110230513.0 010 $a1-83724-566-5 010 $a1-5231-4234-0 010 $a1-83953-072-3 035 $a(MiAaPQ)EBC6805086 035 $a(Au-PeEL)EBL6805086 035 $a(CKB)19421990600041 035 $a(OCoLC)1286429097 035 $a(NjHacI)9919421990600041 035 $a(BIP)080459766 035 $a(EXLCZ)9919421990600041 100 $a20211119d2022 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aSmall Wind and Hydrokinetic Turbines 205 $a1st ed. 210 1$aStevenage :$cInstitution of Engineering & Technology,$d2022. 210 4$dİ2021. 215 $a1 online resource (520 pages) 225 1 $aEnergy Engineering 311 08$a1-83953-071-5 320 $aIncludes bibliographical references and index. 327 $aIntro -- Contents -- About the editors -- Introduction -- 1. Wind resource assessment for small wind turbines | Takaaki Kono and Jonathan Whale -- 1.1 General life cycle of wind energy project -- 1.2 General wind resource assessment process -- 1.3 Specific features of WRA for SWTs -- References -- 2. Resource assessment for hydrokinetic turbines | Muluken Temesgen Tigabu, David Wood and Bimrew Tamrat Admasu -- 2.1 Introduction -- 2.2 The context of hydrokinetic turbines -- 2.3 Power density estimation for HKTs -- 2.4 Resource prediction models -- 2.5 Conclusion -- References -- 3. Small hydrokinetic turbines | Brian Kirke -- 3.1 Introduction -- 3.2 The need/potential market -- 3.3 Potential problems with HKTs -- 3.4 Differences between hydrokinetic and wind energy -- 3.5 Turbine types -- 3.6 Ducts and diffusers -- 3.7 Oscillating foils -- 3.8 Vortex shedding -- 3.9 Tidal sails -- 3.10 Floating debris clogging turbines and damage from floating logs -- 3.11 Blockage and water surface gradient -- 3.12 Tidal and river level variation -- 3.13 Fast-flowing rivers -- 3.14 Canals -- 3.15 Economics -- 3.16 Actual progress to date -- 3.17 Future prospects -- References -- 4. Computational methods for vertical axis wind turbines | Anders Goude and Victor Mendoza -- 4.1 Introduction -- 4.2 VAWT theory -- 4.3 General simulation considerations -- 4.4 Streamtube models -- 4.5 Actuator cylinder models -- 4.6 Actuator line models -- 4.7 Vortex model -- 4.8 CFD with resolved boundary layers -- 4.9 Model validations -- 4.10 Discussion and conclusions -- References -- 5. VAWT wind tunnel experiments | Lorenzo Battisti -- 5.1 Wind tunnel facility -- 5.2 Scaling limits in wind tunnels -- References -- 6. The aerodynamics of water pumping windmills | Itoje H. John and David Wood -- 6.1 Windmill blades -- 6.2 Windmills compared to wind turbines. 327 $a6.3 Windmill aerodynamics -- 6.4 Starting behavior of windmills -- References -- 7. Blade element analysis and design of horizontal-axis turbines | Jerson R.P. Vaz and David Wood -- 7.1 Introduction -- 7.2 Horizontal-axis wind and hydrokinetic turbines -- 7.3 Cavitation on hydrokinetic turbines -- 7.4 Blade element momentum theory -- 7.5 Angular and axial momentum theory with a diffuser -- 7.6 Blade element theory for diffuser-augmented turbines -- 7.7 The accuracy of blade element momentum theory -- 7.8 Design using blade element momentum theory -- 7.9 Conclusions -- References -- 8. Vortex-induced vibration-based energy harvesting | Arindam Banerjee and Kai He -- 8.1 Physics of flow around cylinders -- 8.2 Governing equations -- 8.3 Parameters that affect VIV -- 8.4 Role of PTC in augmenting VIV in TrSL2 and TrSL3 regimes-transition from VIV to galloping instability -- 8.5 Devices for marine and wind energy applications -- 8.6 Future scope -- References -- 9. Field testing of a 5-kW horizontal-axis wind turbine | David Robert Bradney, Samuel Petersen Evans, Mariana Salles Pereira da Costa and Philip Douglas Clausen -- 9.1 Introduction -- 9.2 Description of the 5-kW horizontal-axis wind turbine -- 9.3 Turbine instrumentation and data acquisition systems -- 9.4 Site conditions and turbine performance -- 9.5 Tailfin size and turbine's dynamic response -- 9.6 Blade response in unsteady wind flow -- 9.7 Turbine starting performance -- 9.8 Conclusions -- References -- 10. Aeroelastic modelling of a 5-kW horizontal axis wind turbine | Samuel Petersen Evans and Philip Douglas Clausen -- 10.1 Introduction -- 10.2 Methodology -- 10.3 Results and discussion -- 10.4 Conclusions and future work -- Appendix -- References -- 11. The very low head turbine-a new hydro approach | Paul G. Kemp -- 11.1 VLH conceptualization -- 11.2 VLH technology. 327 $a11.3 Cold climate adaptation -- 11.4 VLH hydraulic studies -- 11.5 Canadian VLH fish studies -- 11.6 Case study: Wasdell Falls VLH Hydro Plant -- 11.7 The art of engineering design -- 11.8 VLH summary -- References -- 12. Development and experience with a vertical-axis hydrokinetic power generation system | Clayton Bear and Michael Bear -- 12.1 Introduction -- 12.2 History -- 12.3 Technology -- 12.4 Applications -- 12.5 System configuration -- 12.6 Development program -- 12.7 Initial prototypes -- 12.8 First-generation designs -- 12.9 Second-generation designs -- 12.10 Tidal deployments -- 12.11 Summary -- 12.12 Case studies -- References -- 13. SWTs for arctic applications: powering autonomous rovers | Morten Hedelykke Dietz Fuglsang and Robert Flemming Mikkelsen -- 13.1 Introduction -- 13.2 Location and local conditions -- 13.3 Turbine functional requirements -- 13.4 Selection of a turbine with prior arctic references -- 13.5 Description of the field test -- 13.6 Results from the field test -- 13.7 Conclusions -- References -- 14. Commercialisation of a small diffuser-augmented wind turbine for microgrids | Samuel Petersen Evans, James B. Bradley and Joss E. Kesby -- 14.1 Introduction -- 14.2 Aims -- 14.3 Methodology -- 14.4 Conclusions -- 14.5 Recommendations and future work -- Conflict of interest -- References -- 15. A tide like no other: harnessing the power of the Bay of Fundy | Tony Wright -- 15.1 Introduction -- 15.2 FORCE as host -- 15.3 FORCE as steward -- 15.4 Turbines in the water -- 15.5 Operations and infrastructure -- 15.6 Research and monitoring -- 15.7 Social license -- 15.8 Visitor centre -- 15.9 Emission displacement -- 15.10 Final thoughts -- References -- 16. Sustainable materials for small blades | Igor dos Santos Gomes, Roberto Tetsuo Fujiyama, Jerson Rogerio Pinheiro Vaz and David Wood -- 16.1 Introduction. 327 $a16.2 Small hydrokinetic and wind turbine blades -- 16.3 Sustainable reinforcement materials for small hydrokinetic and wind turbine blades -- 16.4 Final considerations -- References -- Index. 330 $aSmall Wind and Hydrokinetic Turbines is a valuable summary for researchers involved with small wind turbines and SHKT development and deployment, both in academia and industry, for research on powering remote areas, as well as for advanced students and manufacturers of turbines. 410 0$aEnergy Engineering 606 $aWind power plants 615 0$aWind power plants. 676 $a621.312136 700 $aClausen$b Philip$01824614 701 $aWhale$b Jonathan$01824615 701 $aWood$b David$0385477 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9911006717303321 996 $aSmall Wind and Hydrokinetic Turbines$94391828 997 $aUNINA