LEADER 05189nam 22007214a 450 001 9911006687803321 005 20200520144314.0 010 $a1-5231-2123-8 010 $a9786612349157 010 $a1-282-34915-5 010 $a0-19-157421-X 035 $a(CKB)2560000000296379 035 $a(EBL)3053556 035 $a(OCoLC)922969630 035 $a(SSID)ssj0000289002 035 $a(PQKBManifestationID)11221424 035 $a(PQKBTitleCode)TC0000289002 035 $a(PQKBWorkID)10383679 035 $a(PQKB)11632235 035 $a(StDuBDS)EDZ0000075792 035 $a(MiAaPQ)EBC3053556 035 $a(MiAaPQ)EBC7038165 035 $a(Au-PeEL)EBL7038165 035 $a(EXLCZ)992560000000296379 100 $a20091114d2010 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aApplied shape optimization for fluids /$fBijan Mohammadi, Olivier Pironneau 205 $a2nd ed. 210 $aOxford ;$aNew York $cOxford University Press$dc2010 215 $a1 online resource (292 p.) 225 1 $aNumerical mathematics and scientific computation 300 $aDescription based upon print version of record. 311 $a0-19-954690-8 311 $a0-19-172048-8 320 $aIncludes bibliographical references and index. 327 $aContents; 1 Introduction; 2 Optimal shape design; 2.1 Introduction; 2.2 Examples; 2.2.1 Minimum weight of structures; 2.2.2 Wing drag optimization; 2.2.3 Synthetic jets and riblets; 2.2.4 Stealth wings; 2.2.5 Optimal breakwater; 2.2.6 Two academic test cases: nozzle optimization; 2.3 Existence of solutions; 2.3.1 Topological optimization; 2.3.2 Suficient conditions for existence; 2.4 Solution by optimization methods; 2.4.1 Gradient methods; 2.4.2 Newton methods; 2.4.3 Constraints; 2.4.4 A constrained optimization algorithm; 2.5 Sensitivity analysis 327 $a2.5.1 Sensitivity analysis for the nozzle problem2.5.2 Numerical tests with freefem++; 2.6 Discretization with triangular elements; 2.6.1 Sensitivity of the discrete problem; 2.7 Implementation and numerical issues; 2.7.1 Independence from the cost function; 2.7.2 Addition of geometrical constraints; 2.7.3 Automatic differentiation; 2.8 Optimal design for Navier-Stokes flows; 2.8.1 Optimal shape design for Stokes flows; 2.8.2 Optimal shape design for Navier-Stokes flows; References; 3 Partial differential equations for fluids; 3.1 Introduction; 3.2 The Navier-Stokes equations 327 $a3.2.1 Conservation of mass3.2.2 Conservation of momentum; 3.2.3 Conservation of energy and and the law of state; 3.3 Inviscid flows; 3.4 Incompressible flows; 3.5 Potential flows; 3.6 Turbulence modeling; 3.6.1 The Reynolds number; 3.6.2 Reynolds equations; 3.6.3 The k - ? model; 3.7 Equations for compressible flows in conservation form; 3.7.1 Boundary and initial conditions; 3.8 Wall laws; 3.8.1 Generalized wall functions for u; 3.8.2 Wall function for the temperature; 3.8.3 k and ?; 3.9 Generalization of wall functions; 3.9.1 Pressure correction 327 $a3.9.2 Corrections on adiabatic walls for compressible flows3.9.3 Prescribing ?[sub(w)]; 3.9.4 Correction for the Reichardt law; 3.10 Wall functions for isothermal walls; References; 4 Some numerical methods for fluids; 4.1 Introduction; 4.2 Numerical methods for compressible flows; 4.2.1 Flux schemes and upwinded schemes; 4.2.2 A FEM-FVM discretization; 4.2.3 Approximation of the convection fluxes; 4.2.4 Accuracy improvement; 4.2.5 Positivity; 4.2.6 Time integration; 4.2.7 Local time stepping procedure; 4.2.8 Implementation of the boundary conditions 327 $a4.2.9 Solid walls: transpiration boundary condition4.2.10 Solid walls: implementation of wall laws; 4.3 Incompressible flows; 4.3.1 Solution by a projection scheme; 4.3.2 Spatial discretization; 4.3.3 Local time stepping; 4.3.4 Numerical approximations for the k - ? equations; 4.4 Mesh adaptation; 4.4.1 Delaunay mesh generator; 4.4.2 Metric definition; 4.4.3 Mesh adaptation for unsteady flows; 4.5 An example of adaptive unsteady flow calculation; References; 5 Sensitivity evaluation and automatic differentiation; 5.1 Introduction; 5.2 Computations of derivatives; 5.2.1 Finite differences 327 $a5.2.2 Complex variables method 330 8 $aExamining shape optimization problems for fluids, with the equations needed for their understanding and the simulation of these problems, this text introduces automatic differentiation approximate gradients, and automatic mesh refinement. 410 0$aNumerical mathematics and scientific computation. 606 $aFluid dynamics$xMathematics 606 $aMathematical optimization 606 $aShape theory (Topology) 615 0$aFluid dynamics$xMathematics. 615 0$aMathematical optimization. 615 0$aShape theory (Topology) 676 $a620.1/06/0151 700 $aMohammadi$b B$01822931 701 $aPironneau$b Olivier$0306 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9911006687803321 996 $aApplied shape optimization for fluids$94389378 997 $aUNINA LEADER 02394nam 22004813 450 001 9911022372103321 005 20250608090416.0 010 $a3-0364-1797-4 035 $a(MiAaPQ)EBC32146018 035 $a(Au-PeEL)EBL32146018 035 $a(CKB)39171116700041 035 $a(OCoLC)1523376259 035 $a(Exl-AI)32146018 035 $a(EXLCZ)9939171116700041 100 $a20250608d2025 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aInnovations in Bridge Engineering 205 $a1st ed. 210 1$aZurich :$cTrans Tech Publications, Limited,$d2025. 210 4$d©2025. 215 $a1 online resource (102 pages) 311 08$a3-0364-0797-9 327 $aIntro -- Innovations in Bridge Engineering -- Preface -- Table of Contents -- Chapter 1: Bridges -- Execution of Repair Works on the Trogir -?iovo Island Bridge -- Development of Conceptual Design of Bridges -- The Past Decade of UHPFRC Bridges in the Czech Republic -- Bridge Modelling and Structural Analysis in BIM -- Building Information Modelling of Concrete Bridges and Residential Building Structures -- Chapter 2: Reliability Assessment and Health Monitoring of Bridge Structures -- Design of FLM71 Fatigue Loading Model for Fatigue Assessment of Bridge Structures -- Probabilistic Model for Thermal Actions on Concrete Bridges Based on Meteorological Measurements - Case Study -- Smart Health Monitoring of Concrete Bridges Using Digital Twin and Ai Applications -- Keyword Index -- Author Index. 330 $aSelected peer-reviewed full text papers from the Concrete Structures and Technology 2024 Selected peer-reviewed full text papers from the Concrete Structures and Technology, 22-24 September 2024, Prague, Czech Republic. 606 $aBridges$xDesign and construction$7Generated by AI 606 $aStructural engineering$7Generated by AI 615 0$aBridges$xDesign and construction 615 0$aStructural engineering 676 $a624.25 700 $aNenadálová$b Sárka$01822479 701 $aJohová$b Petra$01822480 701 $aHamplová$b Kate?ina$01823047 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9911022372103321 996 $aInnovations in Bridge Engineering$94431071 997 $aUNINA