LEADER 11828nam 22005893 450 001 9911006673303321 005 20250416110549.0 010 $a9780443192302 010 $a0443192308 035 $a(MiAaPQ)EBC31338760 035 $a(Au-PeEL)EBL31338760 035 $a(CKB)32010423800041 035 $a(Exl-AI)31338760 035 $a(OCoLC)1434176764 035 $a(FR-PaCSA)88964303 035 $a(FRCYB88964303)88964303 035 $a(EXLCZ)9932010423800041 100 $a20240514d2024 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aAdvances in Natural Gas $eFormation, processing, and applications : Volume 8, Natural gas process modelling and simulation / edited by Mohammad Reza Rahimpour, Mohammad Amin Makarem, Maryam Meshksar 205 $a1st ed. 210 1$aSan Diego :$cElsevier,$d2024. 210 4$dİ2024. 215 $a1 online resource (776 pages) 311 08$a9780443192296 311 08$a0443192294 327 $aFront Cover -- ADVANCES INNATURAL GAS:FORMATION,PROCESSING, AND APPLICATIONS -- ADVANCES IN NATURALGAS: FORMATION,PROCESSING, AND APPLICATIONS -- Copyright -- Contents -- Contributors -- About the editors -- Preface -- Reviewer acknowledgments -- I - Modeling and simulationof natural gassweetening processes and apparatus -- 1 - Process modeling and simulation of natural gas sweetening by absorption processes -- 1. Introduction -- 1.1 Natural gas sweetening process: Parameters for modeling -- 2. Absorption in a fluidic media -- 2.1 Types of alkanol amines -- 2.2 Hydrogen sulfide and alkanol amines -- 2.3 Carbon dioxide and alkanol amines -- 3. Process selection -- 4. Modeling -- 4.1 Generalization of distillation tower algorithm -- 4.2 Mathematical model of acidic gas absorption tower -- 4.3 Model assumptions -- 4.4 Model theory -- 5. Fundamental equations and principles for modeling natural gas sweetening -- 6. Benefits of using simulation models -- 7. Simulation models to reduce costs and improve efficiency -- 8. Simulation models to optimize -- 9. Limitations of using simulation models -- 10. Successful implementation of simulation models -- 11. Conclusion and future outlooks -- Abbreviations and symbols -- Acknowledgment -- References -- 2 - Modeling and simulation of natural gas sweetening by various adsorption technologies -- 1. Introduction -- 2. Sweetening adsorption processes -- 2.1 Pressure swing adsorption -- 2.1.1 Procedure -- 2.1.2 The effect of different parameters on the PSA process with related equations -- 2.1.2.1 Adsorbent -- 2.1.2.2 Bed porosity -- 2.1.2.3 Pressure -- 2.1.2.4 Residence time -- 2.1.2.5 Adsorption time -- 2.1.2.6 Purge/feed ratio -- 2.1.2.7 Depressurization and pressure equalization -- 2.1.2.8 Rinse time -- 2.1.3 Literature -- 2.2 Temperature swing adsorption -- 2.2.1 Procedure. 327 $a2.2.1.1 Heat and mass transfer model equations -- 2.2.1.2 Mass balance equations -- 2.2.1.3 Heat balance equations -- 2.2.2 Literature -- 2.3 Electric swing adsorption -- 2.3.1 Procedure -- 2.3.2 Literature -- 2.4 Vacuum swing adsorption -- 2.4.1 Procedure -- 2.4.2 Literature -- 2.5 Mixed swing adsorption processes -- 2.5.1 Temperature Electric Swing Adsorption -- 2.5.1.1 Model description -- 2.5.2 Pressure temperature swing adsorption -- 2.5.2.1 Procedure -- 2.5.3 Vacuum pressure swing adsorption -- 2.5.3.1 Procedure -- 3. Conclusion and future outlooks -- Abbreviations and symbols -- References -- 3 - Modeling and simulation of natural gas sweetening using membranes -- 1. Introduction -- 1.1 Natural gas sweetening -- 1.2 Mathematical modeling -- 1.3 Membrane systems -- 1.3.1 Classification of membrane systems -- 2. Principles and procedures -- 2.1 Gas separation using HFM -- 2.1.1 Mathematical model of gas separation -- 2.2 Gas absorption using gas-liquid membrane contactor -- 2.2.1 Mathematical modeling -- 2.2.1.1 Membrane lumen side (liquid) -- 2.2.1.2 Membrane walls -- 2.2.1.3 Module shell (gas) -- 3. Current applications and cases -- 3.1 Membrane separation of CO2 at high pressure -- 3.2 Membrane separation at moderate pressure -- 3.3 Liquid-gas membrane contactor -- 4. Conclusion and future outlooks -- Abbreviations and symbols -- References -- 4 - Modeling and simulation of CO2 removal from CO2-rich natural gas via supersonic separators -- 1. Introduction -- 1.1 State of the art in natural gas CO2 removal -- 2. Overview of CO2-Rich natural gas in raw form -- 3. The content of CO2-rich NG and its processing techniques -- 4. Technologies for CO2 capture from CO2-Rich natural gas -- 5. CO2-rich natural gas processing using supersonic separators -- 6. Comparison of process alternatives -- 6.1 Conventional process: TEG+JT/LTS. 327 $a6.2 Comparison between TEG+JT/LTS and supersonic separator -- 7. HYSYS modeling of supersonic separator units for CO2-Rich natural gas treatment -- 8. Modeling supersonic separation for natural gas dew-point adjustment -- 9. Supersonic separation for natural gas CO2 removal -- 9.1 Supersonic separator modeling and simulation: SS-UOE -- 10. Conclusion and future outlooks -- Abbreviations and symbols -- References -- 5 - Case studies of modeling and simulation of natural gas sweetening processes -- 1. Introduction -- 2. Acid gas removal methodology -- 2.1 AGR from natural gas using cryogenic process -- 2.2 AGR from natural gas using absorption -- 2.3 AGR from natural gas using membrane-gas solvent contactors -- 2.4 AGR from natural gas using adsorption -- 3. Conclusions and future outlooks -- Abbreviations and symbols -- References -- II - Modeling and simulationof natural gas dehydrationprocesses and apparatus -- 6 - Process modeling and simulation of natural gas dehydration by absorption technology -- 1. Introduction -- 2. Gas hydrate -- 3. Gas dehydration process -- 3.1 Traditional methods of dehydration -- 3.2 Gas stripping dehydration method -- 4. Modeling thermodynamics -- 4.1 Modeling UMR-PRU -- 4.1.1 Summary of the model -- 4.1.2 Adoption in industrial simulation -- 4.2 An outline of TST/NRTL -- 5. Conclusion and future outlooks -- Abbreviations and symbols -- References -- 7 - Modeling and simulating natural gas dehydration by adsorption technologies: Pressure swing adsorption, temperature swin ... -- 1. Introduction -- 2. Mathematical foundations for dehydration modeling -- 3. Adsorption-based dehydration technologies -- 3.1 Pressure swing adsorption -- 3.2 Vacuum swing adsorption -- 3.3 Temperature swing adsorption -- 4. Typical industrial application units -- 4.1 Typical operating modes -- 4.1.1 PSA for hydrogen purification. 327 $a4.1.2 TSA for natural gas dehydration -- 4.2 Other applications -- 5. Conclusion and future outlooks -- Abbreviations and symbols -- References -- 8 - Membrane-based modeling and simulation of natural gas dehydration -- 1. Introduction -- 2. Dehydration process -- 2.1 DEG regeneration -- 3. Function, configuration, and characteristics of membrane processes -- 3.1 Conventional cross-flow design -- 3.2 Cross-flow model with the influent under vacuum -- 3.3 Role of an expanded residue slipstream as the sweep in a countercurrent design -- 3.4 Design employing a countercurrent flow of sweep-dry nitrogen -- 3.5 Four membrane system concepts have been evaluated -- 3.6 Another application of SS for NG purification: Polymer membrane modeling -- 4. Modeling and simulation overview -- 4.1 Modeling -- 5. Simulation -- 5.1 Overview of process simulation instruments -- 5.2 Interface for connecting to simulators -- 6. System design of membrane processes -- 6.1 Different phases of system design -- 6.2 Different design techniques for membrane systems -- 6.2.1 Customization of already-existing membrane characteristics -- 6.2.2 Program development customization -- 7. Membranes challenges -- 8. Conclusion and future outlooks -- Abbreviations and symbols -- References -- 9 - Modeling and simulation of natural gas dehydration via supersonic separators -- 1. Introduction -- 2. Natural gas dehydration methods -- 3. Condensation process -- 3.1 Laval nozzle history for condensation -- 3.2 Condensation mechanisms -- 3.2.1 Nucleation -- 3.2.2 Droplet formation and growth -- 3.3 Modeling and simulations -- 3.4 Condensation experimentation -- 3.5 Modeling of supersonic separation -- 4. Separation processes -- 4.1 Swirler design -- 4.2 Shock wave location -- 5. Pressure recovery -- 6. Conclusion and future outlooks -- Abbreviations and symbols -- References. 327 $aIII - Modeling and simulation of other impuritiesremoval from natural gas -- 10 - Modeling and simulation of hydrocarbon dew point adjustment of natural gas via supersonic separators -- 1. Introduction -- 2. Hydrocarbon dew point -- 3. Supersonic technology -- 3.1 Design procedure -- 3.2 History -- 3.3 Translang technologies ltd -- 3.4 Effectiveness -- 3.5 Supersonic technology comparing to other technologies -- 4. Supersonic process design -- 4.1 Supersonic process design specification -- 4.2 Process simulation of the supersonic separation -- 4.3 Operating unit design and sizing -- 4.3.1 Vessels, containers, and separators -- 4.3.2 Compressors, turbines, and pumps -- 4.3.3 Heat exchangers, coolers, and heaters -- 4.3.4 Towers and columns -- 4.4 Technoeconomics -- 4.4.1 Capital expenditures estimation -- 4.4.2 Operating expenditure estimation -- 4.4.3 Revenue estimation -- 5. Supersonic separation modeling -- 5.1 Condensation -- 5.1.1 Condensation mechanisms -- 5.1.2 Condensation models -- 5.2 Separation processes -- 5.3 Shock wave location -- 6. Conclusion and future outlooks -- Abbreviations and symbols -- References -- 11 - Thermodynamic models and process simulation of mercury removal from natural gas -- 1. Introduction -- 2. Principles and procedures of thermodynamic models for mercury removal from natural gas -- 2.1 UMR-PRU model -- 2.2 Soave-Redlich-Kwong EOS -- 2.3 SAFT models -- 2.3.1 PC-SAFT model -- 2.3.2 Critical point-based perturbed-chain statistical association fluid theory model -- 2.4 Peng and Robinson model -- 3. Simulation and modeling of mercury removal process from natural gas -- 4. Processes of mercury removal in natural gas industry -- 4.1 Fixed-bed reactors -- 4.2 Scrubbing solution -- 4.3 Simultaneous mercury and hydrogen sulfide removal process -- 4.4 Glycol and molecular sieve dehydration process. 327 $a4.5 Type of scenarios for installing mercury removal process from the natural gas. 330 $aThis volume focuses on the process modeling and simulation of natural gas, specifically addressing sweetening processes. Edited by Mohammad Reza Rahimpour, Mohammad Amin Makarem, and Maryam Meshksar, the book offers in-depth insights into absorption and adsorption technologies used for natural gas sweetening. It provides fundamental equations and principles for modeling, highlighting benefits, cost reduction, and efficiency improvements through simulation models. The book also discusses limitations and successful applications of these models, aiming to optimize processes. It caters primarily to professionals and researchers in chemical engineering and related fields, seeking to enhance their understanding and application of natural gas processing technologies.$7Generated by AI. 606 $aNatural gas$7Generated by AI 606 $aSimulation methods$7Generated by AI 615 0$aNatural gas 615 0$aSimulation methods 676 $a665.73 700 $aRahimpour$b Mohammad Reza$01822981 701 $aMakarem$b Mohammad Amin$01822982 701 $aMeshksar$b Maryam$01822983 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9911006673303321 996 $aAdvances in Natural Gas$94389432 997 $aUNINA