LEADER 05671nam 2200709Ia 450 001 9911006616903321 005 20200520144314.0 010 $a9781601197733 010 $a160119773X 010 $a9781848161542 010 $a1848161549 035 $a(CKB)1000000000766344 035 $a(EBL)1193268 035 $a(SSID)ssj0000072590 035 $a(PQKBManifestationID)11972094 035 $a(PQKBTitleCode)TC0000072590 035 $a(PQKBWorkID)10102490 035 $a(PQKB)11428388 035 $a(MiAaPQ)EBC1193268 035 $a(WSP)00000399 035 $a(Perlego)845554 035 $a(EXLCZ)991000000000766344 100 $a20090315d2008 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 00$aNanostructured and photoelectrochemical systems for solar photon conversion /$feditors, Mary D. Archer, Arthur J. Nozik 210 $aLondon $cImperial College Press ;$aSingapore ;$aHackensack, NJ $cWorld Scientific Pub. Co.$dc2008 215 $a1 online resource (780 p.) 225 1 $aSeries on photoconversion of solar energy ;$vv. 3 300 $aDescription based upon print version of record. 311 08$a9781860942556 311 08$a1860942555 320 $aIncludes bibliographical references and index. 327 $aCONTENTS; About the authors; Preface; Overview M. D. Archer; 1.1 Themes; 1.2 Historical perspective; 1.3 Extremely thin absorber (ETA) cells; 1.4 Organic solar cells; 1.5 Dye-sensitised solar cells (Gra?tzel cells); 1.6 Regenerative solar cells; 1.7 Future prospects; App. The vacuum scale of electrode potential and the concept of the 1A solution Fermi level; 1A.1 SHE and SCE scales of electrode potential; 1A.2 Absolute electrode potentials; 1A.3 Absolute electrode potential of the SHE; 1A.4 The solution Fermi level; 1A.5 Vacuum scale of electrode potential; References 327 $a2 Fundamentals in photoelectrochemistry R. J. D. Miller and R. Memming2.1 Introduction; 2.2 Photophysics of semiconductors and semiconductor particles; 2.2.1 Field effects; 2.3 Carrier relaxation; 2.3.1 Bulk three-dimensional semiconductors; 2.3.2 Layered semiconductors: quasi-two-dimensional systems; 2.3.3 Quasi-one-dimensional semiconductors; 2.3.4 Nanoscale-structured semiconductors; 2.3.5 Midgap state effects: surface-state trapping; 2.4 Charge transfer at the semiconductor-electrolyte interface; 2.4.1 Energy levels at the semiconductor-liquid interface; 2.4.2 Majority-carrier processes 327 $a2.4.3 Minority-carrier processes2.4.4 The quasi-Fermi level concept for electron-transfer processes; 2.4.5 Interfacial charge-transfer dynamics; 2.4.6 Dye sensitisation; 2.5 Conversion of solar energy; 2.5.1 Electrochemical photovoltaic cells; 2.5.2 Photoelectrolysis of water; 2.5.3 Conversion efficiencies; 2.5.4 Competition between redox reactions and anodic decomposition; 2.6 Photocatalysis; 2.7 Summary; Editorial note; References; 3 Fundamentals and applications of quantum-confined structures A. J. Nozik; 3.1 Introduction; 3.2 Quantisation effects in semiconductor nanostructures 327 $a3.2.1 Synthesis of semiconductor nanostructures3.2.2 Energy levels in quantum wells, superlattices and quantum dots; 3.3 Optical spectroscopy of quantum wells, superlattices and quantum dots; 3.3.1 Quantum wells and superlattices; 3.3.2 Quantum dots; 3.4 Hot electron and hole cooling dynamics in quantum-confined semiconductors; 3.4.1 Quantum wells and superlattices; 3.4.2 Quantum dots; 3.5 High conversion efficiency via multiple exciton generation in quantum dots; 3.5.1 Cooling dynamics in quantum dots; 3.5.2 Electron-hole pair (exciton) multiplication in quantum dots 327 $a3.5.3 Theory of multiple exciton generation3.5.4 Thermodynamic calculations of conversion efficiency in MEG QD solar cells; 3.6 Quantum dot solar cell configurations; 3.6.1 Photoelectrodes composed of quantum dot arrays; 3.6.2 Quantum dot-sensitised nanocrystalline TiO2 solar cells; 3.6.3 Quantum dots dispersed in organic semiconductor polymer matrices; 3.7 Summary and conclusions; Acknowledgements; References; 4 Fundamentals and applications in electron-transfer reactions M. D. Archer; 4.1 Introduction; 4.2 Historical perspective; 4.3 Thermodynamics of ET and PET reactions 327 $a4.4 Classical Marcus theory 330 $aIn this book, expert authors describe advanced solar photon conversion approaches that promise highly efficient photovoltaic and photoelectrochemical cells with sophisticated architectures on the one hand, and plastic photovoltaic coatings that are inexpensive enough to be disposable on the other. Their leitmotifs include light-induced exciton generation, junction architectures that lead to efficient exciton dissociation, and charge collection by percolation through mesoscale phases. Photocatalysis is closely related to photoelectrochemistry, and the fundamentals of both disciplines are covere 410 0$aSeries on photoconversion of solar energy ;$vv. 3. 606 $aPhotoelectrochemistry 606 $aNanostructured materials 606 $aSolar energy 606 $aPhotocatalysis 615 0$aPhotoelectrochemistry. 615 0$aNanostructured materials. 615 0$aSolar energy. 615 0$aPhotocatalysis. 676 $a621.47 701 $aArcher$b Mary D$01825293 701 $aNozik$b Arthur J.$f1936-$01801471 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9911006616903321 996 $aNanostructured and photoelectrochemical systems for solar photon conversion$94392835 997 $aUNINA