LEADER 05637nam 22007213u 450 001 9911007011503321 005 20250320003047.0 035 $a(CKB)2670000000616540 035 $a(EBL)2051700 035 $a(SSID)ssj0001561856 035 $a(PQKBManifestationID)16204484 035 $a(PQKBTitleCode)TC0001561856 035 $a(PQKBWorkID)14833078 035 $a(PQKB)10329663 035 $a(CaSebORM)9781782422556 035 $a(MiAaPQ)EBC2051700 035 $a(EXLCZ)992670000000616540 100 $a20150525d2015|||| u|| | 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aEpitaxial Growth of Complex Metal Oxides $eTechniques, Properties and Applications 210 $aBurlington $cElsevier Science$d2015 215 $a1 online resource (505 p.) 225 1 $aWoodhead Publishing Series in Electronic and Optical Materials 300 $aDescription based upon print version of record. 311 08$a9781782422556 311 08$a1782422552 311 08$a9781782422457 311 08$a1782422455 327 $aFront Cover; Related titles; Epitaxial Growth of Complex Metal OxidesWoodhead Publishing Series in Electronic and Optical Materials: Number 76Edited byG ...; Copyright; Contents; List of contributors; Woodhead Publishing Series in Electronic and Optical Materials; Part 1 - Epitaxial growth of complex metal oxides; 1 - Growth studies of heteroepitaxial oxide thin films using reflection high-energy electron diffraction (RHEED); 1.1 Introduction: reflection high-energy electron diffraction and pulsed laser deposition; 1.2 Basic principles of RHEED1 327 $a1.3 Variations of the specular intensity during deposition1.4 RHEED intensity variations during heteroepitaxy: examples; 1.5 Conclusions; Acknowledgments; References; 2 - Sputtering techniques for epitaxial growth of complex oxides; 2.1 Introduction; 2.2 General considerations for sputtering of complex oxides; 2.3 A practical guide to the sputtered growth of perovskite titanate ferroelectrics; 2.4 Conclusions; References; 3 - Hybrid molecular beam epitaxy for the growth of complex oxide materials; 3.1 Introduction; 3.2 Metal-organic precursors for oxide hybrid molecular beam epitaxy (HMBE) 327 $a3.3 Deposition kinetics of binary oxides from metal-organic (MO) precursors3.4 Opening a growth window with MO precursors; 3.5 Properties of materials grown by hybrid oxide molecular beam epitaxy (MBE); 3.6 Limitations of HMBE and future developments; Acknowledgments; References; 4 - Chemical solution deposition techniques for epitaxial growth of complex oxides; 4.1 Introduction; 4.2 Reagents and solvents; 4.3 Types of chemical solution deposition (CSD) processes; 4.4 Film and pattern formation; 4.5 Crystallization, densification and epitaxy; 4.6 Examples of CSD-derived oxide films 327 $a4.7 ConclusionsReferences; 5 - Epitaxial growth of superconducting oxides; 5.1 Introduction; 5.2 Overview of epitaxial growth of superconducting oxides; 5.3 Requirements for growth of high-quality complex metal-oxide films by molecular-beam epitaxy (MBE); 5.4 Case studies; 5.5 Synthesis of new superconductors by thin-film growth methods; 5.6 Conclusions and future trends; 5.7 Sources of further information and advice; Acknowledgments; References; 6 - Epitaxial growth of magnetic-oxide thin films; 6.1 Introduction; 6.2 Magnetism and major magnetic-oxide systems 327 $a6.3 The effects of thin-film epitaxy on magnetism6.4 Characterization of magnetic-oxide thin films; 6.5 Applications of epitaxial magnetic-oxide thin films; 6.6 Future of epitaxy of complex-oxide magnets; Acknowledgments; References; Part 2 - Properties and analytical techniques; 7 - The effects of strain on crystal structure and properties during epitaxial growth of oxides; 7.1 Introduction; 7.2 Crystal structures of perovskites and related oxides; 7.3 Lattice mismatch-induced stress accommodation in oxide thin films 327 $a7.4 Effect of misfit strain-induced distortions on transport and magnetic properties 330 $aThe atomic arrangement and subsequent properties of a material are determined by the type and conditions of growth leading to epitaxy, making control of these conditions key to the fabrication of higher quality materials. Epitaxial Growth of Complex Metal Oxides reviews the techniques involved in such processes and highlights recent developments in fabrication quality which are facilitating advances in applications for electronic, magnetic and optical purposes. Part One reviews the key techniques involved in the epitaxial growth of complex metal oxides, including growth studies using reflec 410 0$aWoodhead Publishing Series in Electronic and Optical Materials 606 $aEpitaxy 606 $aThin films -- Surfaces 606 $aThin films, Multilayered 606 $aMaterials Science$2HILCC 606 $aChemical & Materials Engineering$2HILCC 606 $aEngineering & Applied Sciences$2HILCC 615 4$aEpitaxy. 615 4$aThin films -- Surfaces. 615 4$aThin films, Multilayered. 615 7$aMaterials Science 615 7$aChemical & Materials Engineering 615 7$aEngineering & Applied Sciences 676 $a621.38152 700 $aKoster$b Gertjan$f1971-$01825074 701 $aHuijben$b M$01825075 701 $aRijnders$b Guus$01825076 801 0$bAU-PeEL 801 1$bAU-PeEL 801 2$bAU-PeEL 906 $aBOOK 912 $a9911007011503321 996 $aEpitaxial Growth of Complex Metal Oxides$94392532 997 $aUNINA LEADER 11843nam 2200793 a 450 001 9911004835603321 005 20200520144314.0 010 $a1-61583-723-X 010 $a0-8194-8112-2 024 7 $a10.1117/3.547465 035 $a(CKB)2470000000003010 035 $a(EBL)728484 035 $a(OCoLC)630584565 035 $a(SSID)ssj0000381290 035 $a(PQKBManifestationID)11258126 035 $a(PQKBTitleCode)TC0000381290 035 $a(PQKBWorkID)10381006 035 $a(PQKB)11166008 035 $a(MiAaPQ)EBC728484 035 $a(CaBNVSL)gtp00538549 035 $a(SPIE)9780819481122 035 $a(PPN)237232251 035 $a(EXLCZ)992470000000003010 100 $a20040209d2004 uy 0 101 0 $aeng 135 $aurbn||||m|||a 181 $ctxt 182 $cc 183 $acr 200 00$aElectroactive polymer (EAP) actuators as artificial muscles $ereality, potential, and challenges /$fYoseph Bar-Cohen, editor 205 $a2nd ed. 210 $aBellingham, Wash. $cSPIE Press$dc2004 215 $a1 online resource (816 p.) 225 1 $aSPIE Press monograph ;$vPM136 300 $aDescription based upon print version of record. 311 $a0-8194-5297-1 320 $aIncludes bibliographical references and index. 327 $aTopic 1. Introduction -- Chapter 1. EAP history, current status, and infrastructure / Yoseph Bar-Cohen -- 1.1. Introduction -- 1.2. Biological muscles -- 1.3. Historical review and currently available active polymers -- 1.4. Polymers with controllable properties or shape -- 1.5. Electroactive polymers (EAP) -- 1.6. The EAP roadmap, need for an established EAP technology -- Infrastructure -- 1.7. Potential -- 1.8. Acknowledgments -- 1.9. References -- 327 $aTopic 2. Natural muscles -- Chapter 2. Natural muscle as a biological system / Gerald H. Pollack, Felix A. Blyakhman, Frederick B. Reitz, Olga V. Yakovenko, and Dwayne L. Dunaway -- 2.1. Conceptual background -- 2.2. Structural considerations -- 2.3. Does contraction involve a phase transition? -- 2.4. Molecular basis of the phase transition -- 2.5. Lessons from the natural muscle system that may be useful for the design of polymer actuators -- 2.6. References -- Chapter 3. Metrics of natural muscle function / Robert J. Full and Kenneth Meijer -- 3.1. Caution about copying and comparisons -- 3.2. Common characterizations, partial picture -- 3.3. Work-loop method reveals diverse roles of muscle function during rhythmic activity -- 3.4. Direct comparisons of muscle with human-made actuators -- 3.5. Future reciprocal Interdisciplinary collaborations -- 3.6. Acknowledgments -- 3.7. References -- 327 $aTopic 3. EAP materials -- Topic 3.1. Electric EAP -- Chapter 4. Electric EAP / Qiming Zhang, Cheng Huang, Feng Xia, and Ji Su -- 4.1. Introduction -- 4.2. General terminology of electromechanical effects in electric EAP -- 4.3. PVDF-based ferroelectric polymers -- 4.4. Ferroelectric odd-numbered polyamides (nylons) -- 4.5. Electrostriction -- 4.6. Field-induced strain due to Maxwell stress effect -- 4.7. High dielectric constant polymeric materials as actuator materials -- 4.8. Electrets -- 4.9. Liquid-crystal polymers -- 4.10. Acknowledgments -- 4.11. References -- 327 $aTopic 3.2. Ionic EAP -- Chapter 5. Electroactive polymer gels / Paul Calvert -- 5.1. Introduction, the gel state -- 5.2. Physical gels -- 5.3. Chemical gels -- 5.4. Thermodynamic properties of gels -- 5.5. Transport properties of gels -- 5.6. Polyelectrolyte gels -- 5.7. Mechanical properties of gels -- 5.8. Chemical actuation of gels -- 5.9. Electrically actuated gels -- 5.10. Recent progress -- 5.11. Future directions -- 5.12. References -- Chapter 6. Ionomeric polymer-metal composites / Sia Nemat-Nasser and Chris W. Thomas -- 6.1. Introduction -- 6.2. Brief history of IPMC materials -- 6.3. Materials and manufacture -- 6.4. Properties and characterization -- 6.5. Actuation mechanism -- 6.6. Development of IPMC applications -- 6.7. Discussion: advantages/disadvantages -- 6.8. Acknowledgments -- 6.9. References -- Chapter 7. Conductive polymers / Jose?-Mari?a Sansin?ena and Virginia Olaza?bal -- 7.1. Brief history of conductive polymers -- 7.2. Applications of conductive polymers -- 7.3. Basic mechanism of CP actuators -- 7.4. Development of CP actuators -- 7.5. Advantages and disadvantages of CP actuators -- 7.6. Acknowledgments -- 7.7. References -- Chapter 8. Carbon nanotube actuators: synthesis, properties, and performance / Geoffrey M. Spinks, Gordon G. Wallace, Ray H. Baughman, and Liming Dai -- 8.1. Introduction -- 8.2. Nanotube synthesis -- 8.3. Characterization of carbon nanotubes -- 8.4. Macroscopic nanotube assemblies: mats and fibers -- 8.5. Mechanical properties of carbon nanotubes -- 8.6. Mechanism of nanotube actuation -- 8.7. Experimental studies of carbon nanotube actuators -- 8.8. Conclusions and future developments -- 8.9. References -- 327 $aTopic 3.3. Molecular EAP -- Chapter 9. Molecular scale electroactive polymers / Michael J. Marsella -- 9.1. Introduction -- 9.2. Intrinsic properties and macroscale translation -- 9.3. Stimulus-induced conformational changes within the single molecule -- 9.4. Final comments -- 9.5. References -- 327 $aTopic 4. Modeling electroactive polymers -- Chapter 10. Computational chemistry / Kristopher E. Wise -- 10.1. Introduction -- 10.2. Overview of computational methods -- 10.3. Quantum mechanical methods -- 10.4. Classical force field simulations -- 10.5. Mesoscale simulations -- 10.6. References -- Chapter 11. Modeling and analysis of chemistry and electromechanics / Thomas Wallmersperger, Bernd Kro?plin, and Rainer W. Gu?lch -- 11.1. Introduction --11.2. Chemical stimulation -- 11.3. Electrical stimulation -- 11.4. Conclusion -- 11.5. References -- Chapter 12. Electromechanical models for optimal design and effective behavior of electroactive polymers / Kaushik Bhattacharya, Jiangyu Li, and Yu Xiao -- 12.1. Introduction -- 12.2. Introduction to finite elasticity -- 12.3. Optimal design of electrostatic actuators -- 12.4. Models of ionomer actuators -- 12.5. Reduced models -- 12.6. Conclusion -- 12.7. Acknowledgment -- 12.8. References -- Chapter 13. Modeling IPMC for design of actuation mechanisms / Satoshi Tadokoro, Masashi Konyo, and Keisuke Oguro -- 13.1. Models and CAE tools for design of IPMC mechanisms -- 13.2. A physicochemical model considering six phenomena -- 13.3. Gray-box macroscopic model for mechanical and control design -- 13.4. Simulation demonstration by models -- 13.5. Applications of the model -- 13.6. References -- 327 $aTopic 5. Processing and fabrication of EAPs -- Chapter 14. Processing and fabrication techniques / Yoseph Bar-Cohen, Virginia Olaza?bal, Jose?-Mari?a Sansin?ena, and Jeffrey Hinkley -- 14.1. Introduction -- 14.2. Synthesis and material processing -- 14.3. Fabrication and shaping techniques -- 14.4. Electroding techniques -- 14.5. System integration methods -- 14.6. EAP actuators -- 14.7. Concluding remarks -- 14.8. References -- 327 $aTopic 6. Testing and characterization -- Chapter 15. Methods of testing and characterization / Stewart Sherrit, Xiaoqi Bao, and Yoseph Bar-Cohen -- 15.1. Introduction -- 15.2. Characterization of EAP with polarization-dependent strains -- 15.3. Characterization of ionic EAP with diffusion-dependent strain -- 15.4. Summary of test methods -- 15.5. Conclusion -- 15.6. Acknowledgments -- 15.7. References -- 327 $aTopic 7. EAP actuators, devices, and mechanisms -- Chapter 16. Application of dielectric elastomer EAP actuators / Roy Kornbluh, Ron Pelrine, Qibing Pei, Marcus Rosenthal, Scott Stanford, Neville Bonwit, Richard Heydt, Harsha Prahlad, and Subramanian V. Shastri -- 16.1. Introduction -- 16.2. Dielectric elastomer EAP, background and basics -- 16.3. Actuator design issues -- 16.4. Operational considerations -- 16.5. Examples of dielectric elastomer EAP actuators and applications -- 16.6. Artificial muscles and applications to biologically inspired devices -- 16.7. General purpose linear actuators -- 16.8. Planar and other actuator configurations -- 16.9. Motors -- 16.10. Generators -- 16.11. Sensors -- 16.12. Summary and future developments -- 16.13. Acknowledgments -- 16.14. References -- 327 $aChapter 17. Biologically inspired robots / Brett Kennedy, Chris Melhuish, and Andrew Adamatzky -- 17.1. Introduction -- 17.2. Biologically inspired mechanisms and robots -- 17.3. Aspects of robotic design -- 17.4. Active polymer actuators in a traditional robotic system -- 17.5. Using rapid prototyping methods for integrated design -- 17.6. Evolutionary design algorithms (genetic algorithm design) -- 17.7. EAP actuators in highly integrated microrobot design -- 17.8. Solving the power problem toward energetic autonomy -- 17.9. The future of active polymer actuators and robots -- 17.10. References -- 327 $aChapter 18. Applications of EAP to the entertainment industry / David Hanson -- 18.1. Introduction -- 18.2. Entertainment and its shifting significance -- 18.3. Technical background to entertainment application of EAP -- 18.4. The craft of aesthetic biomimesis in entertainment -- 18.5. A recipe for using EAP in entertainment -- 18.6. Facial expression robot-practical test bed for EAP -- 18.7. Conclusion -- 18.8. Acknowledgment -- 18.9. References -- 327 $aChapter 19. Haptic interfaces using electrorheological fluids / Constantinos Mavroidis, Yoseph Bar-Cohen, and Mourad Bouzit -- 19.1. Introduction -- 19.2. Electrorheological fluids -- 19.3. Haptic interfaces and electrorheological fluids -- 19.4. MEMICA haptic glove -- 19.5. ECS element model derivation -- 19.6. Parametric analysis of the design of ECS elements -- 19.7. Experimental ECS system and results -- 19.8. Conclusions -- 19.9. Acknowledgments -- 19.10. References -- 327 $aChapter 20. Shape control of precision gossamer apertures / Christopher H. M. Jenkins -- 20.1. Introduction -- 20.2. Shape control of PGAs -- 20.3. Shape control methodologies involving electroactive polymers -- 20.4. Conclusions -- 20.5. Nomenclature -- 20.6. Acknowledgments -- 20.7. References -- 327 $aTopic 8. Lessons learned, applications, and outlook -- Chapter 21. EAP applications, potential, and challenges / Yoseph Bar-Cohen -- 21.1. Introduction -- 21.2. Lesson learned using IPMC and dielectric EAP -- 21.3. Summary of existing EAP materials -- 21.4. Scalability issues and needs -- 21.5. Expected and evolving applications -- 21.6. EAP characterization -- 21.7. Platforms for demonstration of EAP -- 21.8. Future expectations -- 21.9. Acknowledgments -- 21.10. References -- Index. 330 $aIn concept and execution, this book covers the field of EAP with careful attention to all its key aspects and full infrastructure, including the available materials, analytical models, processing techniques, and characterization methods. In this second edition the reader is brought current on promising advances in EAP that have occurred in electric EAP, electroactive polymer gels, ionomeric polymer-metal composites, carbon nanotube actuators, and more. 410 0$aSPIE Press monograph ;$vPM136. 606 $aPolymers in medicine 606 $aConducting polymers 606 $aMuscles 615 0$aPolymers in medicine. 615 0$aConducting polymers. 615 0$aMuscles. 676 $a610/.28 701 $aBar-Cohen$b Yoseph$01645085 712 02$aSociety of Photo-optical Instrumentation Engineers. 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9911004835603321 996 $aElectroactive polymer (EAP) actuators as artificial muscles$94390792 997 $aUNINA