LEADER 10141nam 2200733 a 450 001 9911004812103321 005 20200520144314.0 010 $a9781615837083 010 $a1615837086 010 $a9780819480934 010 $a0819480932 024 7 $a10.1117/3.832717 035 $a(CKB)2470000000002993 035 $a(EBL)728445 035 $a(OCoLC)606702154 035 $a(SSID)ssj0000386862 035 $a(PQKBManifestationID)11266567 035 $a(PQKBTitleCode)TC0000386862 035 $a(PQKBWorkID)10390222 035 $a(PQKB)11393380 035 $a(MiAaPQ)EBC728445 035 $a(CaBNVSL)gtp00538485 035 $a(SPIE)9780819480934 035 $a(PPN)23789176X 035 $a(Perlego)2605782 035 $a(EXLCZ)992470000000002993 100 $a20090910d2009 uy 0 101 0 $aeng 135 $aurbn||||m|||a 181 $ctxt 182 $cc 183 $acr 200 00$aTutorials in complex photonic media /$feditors, Mikhail A. Noginov ... [et al.] 210 $aBellingham, Wash. $cSPIE Press$dc2009 215 $a1 online resource (728 p.) 225 0 $aPress monograph ;$v194 300 $aDescription based upon print version of record. 311 08$a9780819477736 311 08$a0819477737 320 $aIncludes bibliographical references and index. 327 $aForeword -- Preface -- List of contributors -- List of abbreviations-- 1. Negative refraction / Martin W. McCall and Graeme Dewar. 1.1. Introduction -- 1.2. Background -- 1.3. Beyond natural media: waves that run backward -- 1.4. Wires and rings -- 1.5. Experimental confirmation -- 1.6. The "perfect" lens -- 1.7. The formal criterion for achieving negative phase velocity propagation -- 1.8. Fermat's principle and negative space -- 1.9. Cloaking -- 1.10. Conclusion -- Appendix I. The e([omega]) of a square wire array -- Appendix II. Physics of the wire array's plasma frequency and damping rate -- References -- 2. Optical hyperspace: negative refractive index and subwavelength imaging / Leonid V. Alekseyev, Zubin Jacob, and Evgenii Narimanov. 2.1. Introduction -- 2.2. Nonmagnetic negative refraction -- 2.3. Hyperbolic dispersion: materials -- 2.4. Applications -- 2.5. Conclusion -- References. 327 $a3. Magneto-optics and the Kerr effect with ferromagnetic materials / Allan D. Boardman and Neil King. 3.1. Introduction to magneto-optical materials and concepts -- 3.2. Reflection of light from a plane ferromagnetic surface -- 3.3. Enhancing the Kerr effect with attenuated total reflection -- 3.4. Numerical investigations of attenuated total reflection -- 3.5. Conclusions -- References -- 4. Symmetry properties of nonlinear magneto-optical effects / Yutaka Kawabe. 4.1. Introduction -- 4.2. Nonlinear optics in magnetic materials -- 4.3. Magnetic-field-induced second-harmonic generation -- 4.4. Effects due to an optical magnetic field or magnetic dipole moment transition -- 4.5. Experiments -- References -- 5. Optical magnetism in plasmonic metamaterials / Gennady Shvets and Yaroslav A. Urzhumov. 5.1. Introduction -- 5.2. Why is optical magnetism difficult to achieve? -- 5.3. Effective quasistatic dielectric permittivity of a plasmonic metamaterial -- 5.4. Summary -- 5.5. Appendix. Electromagnetic red shifts of plasmonic resonances -- References. 327 $a6. Chiral photonic media / Ian Hodgkinson and Levi Bourke. 6.1. Introduction -- 6.2. Stratified anisotropic media -- 6.3. Chiral architectures and characteristic matrices -- 6.4. Reflectance spectra and polarization response maps -- 6.5. Summary -- References -- 7. Optical vortices / Kevin O'Holleran, Mark R. Dennis, and Miles J. Padgett. 7.1. Introduction -- 7.2. Locating vortex lines -- 7.3. Making beams containing optical vortices -- 7.4. Topology of vortex lines -- 7.5. Computer simulation of vortex structures -- 7.6. Vortex structures in random fields -- 7.7. Experiments for visualizing vortex structures -- 7.8. Conclusions -- References -- 8. Photonic crystals: from fundamentals to functional photonic opals / Durga P. Aryal, Kosmas L. Tsakmakidis, and Ortwin Hess. 8.1. Introduction -- 8.2. Principles of photonic crystals -- 8.3. One-dimensional photonic crystals -- 8.4. Generalization to two- and three-dimensional photonic crystals -- 8.5. Physics of Inverse-Opal Photonic Crystals -- 8.6. Double-Inverse-Opal Photonic Crystals (DIOPCs) -- 8.7. Conclusion -- 8.8. Appendix: Plane Wave Expansion (PWE) method -- References -- 9. Wave interference and modes in random media / Azriel Z. Genack and Sheng Zhang. 9.1. Introduction -- 9.2. Wave interference -- 9.3. Modes -- 9.4. Conclusions -- References -- 10. Chaotic behavior of random lasers / Diederik S. Wiersma, Sushil Mujumdar, Stefano Cavalieri, Renato Torre, Gian-Luca Oppo, Stefano Lepri. 10.1. Introduction -- 10.2. Experiments on emission spectra -- 10.3. Experiments on speckle patterns -- 10.4. Modeling -- 10.5. Levy statistics in random laser emission -- 10.6. Discussion -- References. 327 $a11. Lasing in random media / Hui Cao. 11.1. Introduction -- 11.2. Random lasers with incoherent feedback -- 11.3. Random lasers with coherent feedback -- 11.4. Potential applications of random lasers -- References. Color plate section. 12. Feedback in random lasers / Mikhail A. Noginov. 12.1. Introduction -- 12.2. The concept of a laser -- 12.3. Lasers with nonresonant feedback and random lasers -- 12.4. Photon migration and localization in scattering media and their applications to random lasers -- 12.5. Neodymium random lasers with nonresonant feedback -- 12.6. ZnO random lasers with resonant feedback -- 12.7. Stimulated emission feedback: from nonresonant to resonant and back to nonresonant -- 12.8. Summary of various random laser operation regimes -- References -- 13. Optical metamaterials with zero loss and plasmonic nanolasers / Andrey K. Sarychev. 13.1. Introduction -- 13.2. Magnetic plasmon resonance -- 13.3. Electrodynamics of a nanowire resonator -- 13.4. Capacitance and inductance of two parallel wires -- 13.5. Lumped model of a resonator filled with an active medium -- 13.6. Interaction of nanontennas with an active host medium -- 13.7. Plasmonic nanolasers and optical magnetism -- 13.8. Conclusions -- References. 327 $a14. Resonance energy transfer: theoretical foundations and developing applications / David L. Andrews. 14.1. Introduction -- 14.2. Electromagnetic origins -- 14.3. Features of the pair transfer rate -- 14.4. Energy transfer in heterogeneous solids -- 14.5. Directed energy transfer -- 14.6. Developing applications -- 14.7. Conclusion -- References -- 15. Optics of nanostructured materials from first principles / Vladimir I. Gavrilenko. 15.1. Introduction -- 15.2. Optical response from first principles -- 15.3. Effect of the local field in optics -- 15.4. Electrons in quantum confined systems -- 15.5. Cavity quantum electrodynamics -- 15.6. Optical Raman spectroscopy of nanostructures -- 15.7. Concluding remarks -- Appendix I. Electron energy structure and standard density functional theory -- Appendix II. Optical functions within perturbation theory -- Appendix III. Evaluation of the polarization function including the local field effect -- Appendix IV. Optical field Hamiltonian in second quantization representation -- References.-- 16 Organic photonic materials / Larry R. Dalton, Philip A. Sullivan, Denise H. Bale, Scott R. Hammond, Benjamin C. Olbrict, Harrison Rommel, Bruce Eichinger, and Bruce H. Robinson. 16.1 Preface -- 16.2 Introduction -- 16.3 Effects of dielectric permittivity and dispersion -- 16.4 Complex dendrimer materials: effects of covalent bonds -- 16.5 Binary Chromophore Organic Glasses (BCOGs) -- 16.6 Thermal and photochemical stability: lattice hardening -- 16.7 Thermal and photochemical stability: measurement -- 16.8 Devices and applications -- 16.9 Summary and conclusions -- 16.10. Appendix. Linear and nonlinear polarization -- References. 327 $a17. Charge transport and optical effects in disordered organic semiconductors / Harry H. L. Kwok, You-Lin Wu, and Tai-Ping Sun. 17.1. Introduction -- 17.2. Charge transport -- 17.3. Impedance spectroscopy: bias and temperature dependence -- 17.4. Transient spectroscopy -- 17.5. Thermoelectric effect -- 17.6. Exciton formation -- 17.7. Space-charge effect -- 17.8. Charge transport in the field-effect structure -- References -- 18. Holography and its applications / H. John Caulfield and Chandra S. Vikram. 18.1. Introduction -- 18.2. Basic information on holograms -- 18.2.1 Hologram types -- 18.3. Recording materials for holographic metamaterials -- 18.4. Computer-generated holograms -- 18.5. Simple functionalities of holographic materials -- 18.6. Phase conjugation and holographic optical elements -- 18.7. Related applications and procedures -- References -- In memoriam: Chandra S. Vikram -- 19. Slow and fast light / Joseph E. Vornehm, Jr. and Robert W. Boyd. 19.1. Introduction -- 19.2. Slow light based on material resonances -- 19.3. Slow light based on material structure -- 19.4. Additional considerations -- 19.5. Potential applications -- References -- About the editors -- Index. 330 $aThe field of complex photonic media encompasses many leading-edge areas in physics, chemistry, nanotechnology, materials science, and engineering. In [i]Tutorials in Complex Photonic Media[/i], leading experts have brought together 19 tutorials on breakthroughs in modern optics, such as negative refraction, chiral media, plasmonics, photonic crystals, and organic photonics. 410 0$aSPIE Press monograph ;$vPM194. 606 $aPhotonics 606 $aPhotonic crystals 606 $aMetamaterials 615 0$aPhotonics. 615 0$aPhotonic crystals. 615 0$aMetamaterials. 676 $a621.36 701 $aNoginov$b Mikhail A$0500643 712 02$aSociety of Photo-optical Instrumentation Engineers. 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9911004812103321 996 $aTutorials in complex photonic media$94387999 997 $aUNINA LEADER 04034nam 22005295 450 001 9910863181703321 005 20251113203954.0 010 $a9783030552510 010 $a3030552519 024 7 $a10.1007/978-3-030-55251-0 035 $a(CKB)4100000011479498 035 $a(DE-He213)978-3-030-55251-0 035 $a(MiAaPQ)EBC6362812 035 $a(PPN)255204035 035 $a(MiAaPQ)EBC6362691 035 $a(EXLCZ)994100000011479498 100 $a20201002d2020 u| 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aKrylov Methods for Nonsymmetric Linear Systems $eFrom Theory to Computations /$fby Gérard Meurant, Jurjen Duintjer Tebbens 205 $a1st ed. 2020. 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d2020. 215 $a1 online resource (XIV, 686 p. 184 illus.) 225 1 $aSpringer Series in Computational Mathematics,$x2198-3712 ;$v57 311 08$a9783030552503 311 08$a3030552500 320 $aIncludes bibliographical references and index. 327 $a1. Notation, definitions and tools -- 2. Q-OR and Q-MR methods -- 3. Bases for Krylov subspaces -- 4. FOM/GMRES and variants -- 5. Methods equivalent to FOM or GMRES- 6. Hessenberg/CMRH -- 7. BiCG/QMR and Lanczos algorithms -- 8. Transpose-free Lanczos methods -- 9. The IDR family -- 10. Restart, deflation and truncation -- 11. Related topics -- 12. Numerical comparison of methods -- A. Test matrices and short biographical notices -- References -- Index. 330 $aThis book aims to give an encyclopedic overview of the state-of-the-art of Krylov subspace iterative methods for solving nonsymmetric systems of algebraic linear equations and to study their mathematical properties. Solving systems of algebraic linear equations is among the most frequent problems in scientific computing; it is used in many disciplines such as physics, engineering, chemistry, biology, and several others. Krylov methods have progressively emerged as the iterative methods with the highest efficiency while being very robust for solving large linear systems; they may be expected to remain so, independent of progress in modern computer-related fields such as parallel and high performance computing.The mathematical properties of the methods are described and analyzed along with their behavior in finite precision arithmetic. A number of numerical examples demonstrate the properties and the behavior of the described methods. Also considered are the methods? implementations and coding as Matlab®-like functions. Methods which became popular recently are considered in the general framework of Q-OR (quasi-orthogonal )/Q-MR (quasi-minimum) residual methods. This book can be useful for both practitioners and for readers who are more interested in theory. Together with a review of the state-of-the-art, it presents a number of recent theoretical results of the authors, some of them unpublished, as well as a few original algorithms. Some of the derived formulas might be useful for the design of possible new methods or for future analysis. For the more applied user, the book gives an up-to-date overview of the majority of the available Krylov methods for nonsymmetric linear systems, including well-known convergence properties and, as we said above, template codes that can serve as the base for more individualized and elaborate implementations. 410 0$aSpringer Series in Computational Mathematics,$x2198-3712 ;$v57 606 $aNumerical analysis 606 $aNumerical Analysis 615 0$aNumerical analysis. 615 14$aNumerical Analysis. 676 $a512.5 700 $aMeurant$b Ge?rard A.$0431205 702 $aDuintjer Tebbens$b Jurjen 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910863181703321 996 $aKrylov methods for nonsymmetric linear systems$92287946 997 $aUNINA