LEADER 04085nam 2200649 a 450 001 9911004806303321 005 20200520144314.0 010 $a1-61583-715-9 010 $a0-8194-7874-1 024 7 $a10.1117/3.741688 035 $a(CKB)2470000000002974 035 $a(EBL)728561 035 $a(SSID)ssj0000381464 035 $a(PQKBManifestationID)11302226 035 $a(PQKBTitleCode)TC0000381464 035 $a(PQKBWorkID)10380699 035 $a(PQKB)11456512 035 $a(MiAaPQ)EBC728561 035 $a(OCoLC)435912138 035 $a(CaBNVSL)gtp00535590 035 $a(SPIE)9780819478740 035 $a(PPN)237258390 035 $a(EXLCZ)992470000000002974 100 $a20070710d2007 uy 0 101 0 $aeng 135 $aurbn||||m|||a 181 $ctxt 182 $cc 183 $acr 200 10$aFundamentals of infrared detector materials /$fMichael A. Kinch 210 $aBellingham, Wash. $cSPIE Press$dc2007 215 $a1 online resource (186 p.) 225 1 $aTutorial texts in optical engineering ;$vv. TT 76 300 $aDescription based upon print version of record. 311 $a0-8194-6731-6 320 $aIncludes bibliographical references and index. 327 $a1. Introduction. 2. IR detector performance criteria. 2.1. Photon detectors -- 2.2. Thermal detectors. 327 $a3. IR detector materials: a technology comparison. 3.1. Intrinsic direct bandgap semiconductor -- 3.2. Extrinsic semiconductor -- 3.3. Quantum well IR photodetectors (QWIPs) -- 3.4. Silicon schottky barrier detectors -- 3.5. High-temperature superconductor -- 3.6. Conclusions. 327 $a4. Intrinsic direct bandgap semiconductors. 4.1. Minority carrier lifetime -- 4.2. Diode dark current models -- 4.3. Binary compounds -- 4.4. Ternary alloys -- 4.5. Pb1-x SnxTe -- 4.6. Type III superlattices -- 4.7. Type II superlattices -- 4.8. Direct bandgap materials: conclusions. 327 $a5. HgCdTe: material of choice for tactical systems. 5.1. HgCdTe material properties -- 5.2. HgCdTe device architectures -- 5.3. ROIC requirements -- 5.4. Detector performance -- 5.5. HgCdTe: conclusions. 327 $a6. Uncooled detection. 6.1. Thermal detection -- 6.2. Photon detection -- 6.3. Uncooled photon vs. thermal detection limits -- 6.4. Uncooled detection: conclusions. 327 $a7. HgCdTe electron avalanche photodiodes (EAPDs). 7.1. McIntyre's avalanche photodiode model -- 7.2. Physics of HgCdTe EAPDs -- 7.3. Empirical model for electron avalanche gain in HgCdTe -- 7.4. Room-temperature HgCdTe APD performance -- 7.5. Monte Carlo modeling -- 7.6. Conclusions. 327 $a8. Future HgCdTe developments. 8.1. Dark current model -- 8.2. The separate absorption and detection diode structure -- 8.3. Multicolor and multispectral FPAs -- 8.4. High-density FPAs -- 8.5. Low background operation -- 8.6. Higher operating temperatures -- 8.7. Conclusion -- Epilogue -- Appendix A. Mathcad program for HgCdTe diode dark -- Current modeling -- References -- About the author -- Index. 330 3 $aThe choice of available infrared (IR) detectors for insertion into modern IR systems is both large and confusing. The purpose of this volume is to provide a technical database from which rational IR detector selection criteria evolve, and thus clarify the options open to the modern IR system designer. Emphasis concentrates mainly on high-performance IR systems operating in a tactical environment, although there also is discussion of both strategic environments and low- to medium-performance system requirements. 410 0$aTutorial texts in optical engineering ;$vv. TT 76. 606 $aInfrared detectors$xMaterials 615 0$aInfrared detectors$xMaterials. 676 $a621.36/2 700 $aKinch$b Michael A$01821979 712 02$aSociety of Photo-optical Instrumentation Engineers. 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9911004806303321 996 $aFundamentals of infrared detector materials$94387958 997 $aUNINA