LEADER 02498nam0-22005171i-450- 001 990007883650403321 005 20080327125249.0 010 $a90-04-05280-1$btutta l'opera 010 $a90-04-05282-8$btomo 1. 010 $a90-04-06378-1$btomo 2. 010 $a90-04-08081-3$btomo 3. 010 $a90-04-08353-7$btomi 4. e 5. 010 $a90-04-10370-8$btomo 6. 010 $a90-04-12931-6$btomo 7. 035 $a000788365 035 $aFED01000788365 035 $a(Aleph)000788365FED01 035 $a000788365 100 $a20040513d19779999km-y0itay50------ba 101 0 $adut$alat 102 $aNL 105 $ay---ae--001yy 200 1 $aLexicon latinitatis nederlandicae medii aevi$d=Woordenboek van het middeleeuws latijn van de noordelijke Nederlanden 210 $aLeiden$cBrill$d1977- 215 $atomi (1-538; 539-1234; 1235-1958; 1959-2726; 2727-3404; 3405-4050; 4051-4794 p.)$d32 cm 305 $aPubbl. origin. in fascicoli 307 $aRil. in tela 327 0 $aT. 1.: A-B / composuerunt J.W. Fuchs et Olga Weijers. - 1977$aT. 2.: C / composuerunt J.W. Fuchs, Olga Weijers, Marijke Gumbert. - 1981$aT. 3.: D-E / conditum a Johanne W. Fuchs ; ediderunt Olga Weijers, Marijke Gumbert-Hepp. - 1986$aT. 4.: F-G-I / conditum a Johanne W. Fuchs ; ediderunt Olga Weijers, Marijke Gumbert-Hepp. - 1990$aT. 5.: L-M-N-O / conditum a Johanne W. Fuchs ; ediderunt Olga Weijers, Marijke Gumbert-Hepp. - 1994$aT. 6.: P / conditum a Johanne W. Fuchs ; ediderunt Olga Weijers, Marijke Gumbert-Hepp. - 1998$aT. 7.: Q-R-STU / conditum a Johanne W. Fuchs ; ediderunt Olga Weijers, Marijke Gumbert-Hepp. - 2002 610 0 $aLingua latina medievale$aPaesi bassi$aDizionari 676 $a477.03 700 1$aFuchs,$bJohan Wilhelmus$0282843 701 1$aWeijers,$bOlga$f<1946- >$0180656 702 1$aGumbert,$bMarijke 801 0$aIT$bUNINA$gRICA$2UNIMARC 901 $aBK 912 $a990007883650403321 952 $aP2B-230-2L.L.N.M.AE. (1)-1977$bBibl. 49510$fFLFBC 952 $aP2B-230-2L.L.N.M.AE. (2)-1981$bBibl. 49511$fFLFBC 952 $aP2B-230-2L.L.N.M.AE. (3)-1986$bBibl. 49512$fFLFBC 952 $aP2B-230-2L.L.N.M.AE. (4)-1990$bBibl. 49513$fFLFBC 952 $aP2B-230-2L.L.N.M.AE. (5)-1990$bBibl. 49514$fFLFBC 952 $aP2B-230-2L.L.N.M.AE. (6)-1998$bBibl. 49515$fFLFBC 952 $aP2B-230-2L.L.N.M.AE. (7)-2000$bBibl. 49516$fFLFBC 959 $aFLFBC 996 $aLexicon latinitatis nederlandicae medii aevi$9669270 997 $aUNINA LEADER 05502nam 2200649Ia 450 001 9911004754303321 005 20200520144314.0 010 $a1-281-04970-0 010 $a9786611049706 010 $a0-08-051290-9 035 $a(CKB)1000000000383956 035 $a(EBL)318157 035 $a(OCoLC)476111983 035 $a(SSID)ssj0000212861 035 $a(PQKBManifestationID)11184851 035 $a(PQKBTitleCode)TC0000212861 035 $a(PQKBWorkID)10139009 035 $a(PQKB)10573442 035 $a(MiAaPQ)EBC318157 035 $a(EXLCZ)991000000000383956 100 $a19990120d2000 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aNumerical models of oceans and oceanic processes /$fLakshmi H. Kantha, Carol Anne Clayson ; [foreword by Kirk Bryan] 210 $aSan Diego $cAcademic Press$dc2000 215 $a1 online resource (981 pages) 225 1 $aInternational geophysics series ;$vv. 66 311 0 $a1-4933-0143-8 311 0 $a0-12-434068-7 320 $aIncludes bibliographical references (p. 865-909) and index. 327 $aCover; Contents; List of Acronyms; List of Symbols; Foreword; Preface; Prologue; Chapter 1. Introduction to Ocean Dynamics; 1.1 Types, Advantages, and Limitations of Ocean Models; 1.2 Recent Examples; 1.3 Governing Equations; 1.4 Vorticity Conservation; 1.5 Nondimensional Numbers and Scales of Motion; 1.6 Geostrophic Flow and Thermal Wind; 1.7 Inertial Motions; 1.8 Ekman Layers; 1.9 Sverdrup Transport; 1.10 Western Boundary Intensification (Stommel Solution); 1.11 Gyre Scale Circulation (Munk Solution); 1.12 Barotropic Currents over Topography; 1.13 Baroclinic Transport over Topography 327 $a1.14 Coastal Upwelling and Fronts; 1.15 Mesoscale Eddies and Variability; 1.16 Thermohaline Circulation and Box (Reservoir) Models; 1.17 Numerical Models; Chapter 2. Introduction to Numerical Solutions; 2.1 Introduction; 2.2 Ordinary Differential Equations; 2.3 Partial Differential Equations; 2.4 Elliptic Equations and Steady-State Problems; 2.5 Time Dependent Problems; 2.6 Finite-Difference (Grid Point) Methods; 2.7 Spectral (Spectral Transform) Methods; 2.8 Finite-Element Methods; 2.9 Parameterization of Subgrid Scale Processes; 2.10 Lateral Open Boundary Conditions; 2.11 Computational Issues 327 $a2.12 Examples; Chapter 3. Equatorial Dynamics and Reduced Gravity Models Solutions; 3.1 Oceanic Dynamical Response to Forcing; 3.2 Governing Equations; 3.3 Equatorial Waves; 3.4 Equatorial Currents; 3.5 Reduced Gravity Model of Equatorial Processes; Chapter 4. Midlatitude Dynamics and Quasi-Geostrophic Models; 4.1 Linear Motions; 4.2 Continuous Stratification; 4.3 Geostrophic Adjustment and Instabilities; 4.4 Spinup; 4.5 Quasi-Geostrophic Models; Chapter 5. High-Latitude Dynamics and Sea-Ice Models; 5.1 Salient Features of Ice Cover; 5.2 Momentum Equations for Sea Ice 327 $a5.3 Constitutive Law for Sea Ice (Ice Rheology); 5.4 Continuity Equations for Sea Ice; 5.5 Response of Sea Ice to Storm Passage; 5.6 Numerics; Chapter 6. Tides and Tidal Modeling; 6.1 Description of Tides; 6.2 Formulation: Tidal Potential; 6.3 Body, Load, Atmospheric, and Radiational Tides; 6.4 Dynamical Theory of Tides: Laplace Tidal Equations; 6.5 Equilibrium Theory of Tides; 6.6 Tidal Analysis: Orthotides; 6.7 Tidal Currents; 6.8 Global Tidal Models; 6.9 Regional Tidal Models; 6.10 Geophysical Implications; 6.11 Changes in Earth's Rotation; 6.12 Baroclinic (Internal) Tides 327 $a6.13 Long-Period Tides; 6.14 Shallow Water Tides and Residual Currents; 6.15 Summary; Chapter 7. Coastal Dynamics and Barotropic Models; 7.1 Wind- and Buoyancy-Driven Currents; 7.2 Tidal Motions; 7.3 Continental Shelf Waves; 7.4 Modeling Shelf Circulation; 7.5 Barotropic Models; Chapter 8. Data and Data Processing; 8.1 In Situ Observational Data; 8.2 Remotely Sensed Data; 8.3 NWP Products; 8.4 Preprocessing of Observational Data and Postprocessing of Model Output; Chapter 9. Sigma-Coordinate Regional and Coastal Models; 9.1 Introduction; 9.2 Governing Equations; 9.3 Vertical Mixing; 9.4 Boundary Conditions 330 $aOceans play a pivotal role in our weather and climate. Ocean-borne commerce is vital to our increasingly close-knit global community. Yet we do not fully understand the intricate details of how they function, how they interact with the atmosphere, and what the limits are to their biological productivity and their tolerance to wastes. While satellites are helping us to fill in the gaps, numerical ocean models are playing an important role in increasing our ability to comprehend oceanic processes, monitor the current state of the oceans, and to a limited extent, even predict their future state. 410 0$aInternational geophysics series ;$vv. 66. 606 $aOceanography$xMathematical models 606 $aOceanography$xComputer simulation 615 0$aOceanography$xMathematical models. 615 0$aOceanography$xComputer simulation. 676 $a551.46/001/5118 21 676 $a551.460015118 676 $a551.46015118 676 $a551.460011 700 $aKantha$b L. H$0625028 701 $aClayson$b Carol Anne$0630648 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9911004754303321 996 $aNumerical models of Oceans and Oceanic processes$91204439 997 $aUNINA