LEADER 00947nam0-22002891--450- 001 990009271100403321 005 20101028102309.0 035 $a000927110 035 $aFED01000927110 035 $a(Aleph)000927110FED01 035 $a000927110 100 $a20101028d1932----km-y0itay50------ba 101 0 $afre 102 $aFR 105 $ay-------001yy 200 1 $a<>droit de pétition$eune institution transposée du milieu national dans le milieu international$eétude de droit public interne et de droit international public$fMarcel Richard$gpréface de N. Politis 210 $aParis$cRecueil Sirey$d1932 215 $aXII, 767 p., <1> c. di tav. ripieg.$d26 cm 676 $a342$v11 rid.$zita 700 1$aRichard,$bMarcel$0182332 801 0$aIT$bUNINA$gRICA$2UNIMARC 901 $aBK 912 $a990009271100403321 952 $aX H 60$b27673$fFGBC 959 $aFGBC 996 $aDroit de pétition$9773462 997 $aUNINA LEADER 02812nam 22005415 450 001 9911002544803321 005 20250512130254.0 010 $a3-031-85754-2 024 7 $a10.1007/978-3-031-85754-6 035 $a(CKB)38776177900041 035 $a(DE-He213)978-3-031-85754-6 035 $a(MiAaPQ)EBC32110169 035 $a(Au-PeEL)EBL32110169 035 $a(OCoLC)1524420370 035 $a(EXLCZ)9938776177900041 100 $a20250512d2025 u| 0 101 0 $aeng 135 $aur||||||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aConvexity in Newton's Method /$fby José Antonio Ezquerro Fernández, Miguel Ángel Hernández Verón 205 $a1st ed. 2025. 210 1$aCham :$cSpringer Nature Switzerland :$cImprint: Birkhäuser,$d2025. 215 $a1 online resource (XII, 242 p. 48 illus., 35 illus. in color.) 225 1 $aFrontiers in Mathematics,$x1660-8054 311 08$a3-031-85753-4 327 $aThe degree of logarithmic convexity -- The Newton method and convexity -- Accelerations of the Newton method -- Newton-like methods with high order of convergence -- Optimization of the Chebyshev method. 330 $aThis monograph examines a variety of iterative methods in Banach spaces with a focus on those obtained from the Newton method. Together with the authors? previous two volumes on the topic of the Newton method in Banach spaces, this third volume significantly extends Kantorovich's initial theory. It accomplishes this by emphasizing the influence of the convexity of the function involved, showing how improved iterative methods can be obtained that build upon those introduced in the previous two volumes. Each chapter presents theoretical results and illustrates them with applications to nonlinear equations, including scalar equations, integral equations, boundary value problems, and more. Convexity in Newton's Method will appeal to researchers interested in the theory of the Newton method as well as other iterative methods in Banach spaces. 410 0$aFrontiers in Mathematics,$x1660-8054 606 $aFunctional analysis 606 $aOperator theory 606 $aFunctional Analysis 606 $aOperator Theory 615 0$aFunctional analysis. 615 0$aOperator theory. 615 14$aFunctional Analysis. 615 24$aOperator Theory. 676 $a515.7 700 $aEzquerro Fernández$b José Antonio$4aut$4http://id.loc.gov/vocabulary/relators/aut$0913709 702 $aHernández Verón$b Miguel Ángel$4aut$4http://id.loc.gov/vocabulary/relators/aut 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9911002544803321 996 $aConvexity in Newton's Method$94384734 997 $aUNINA