LEADER 01006nam--2200349---450- 001 990003266970203316 005 20090609133918.0 035 $a000326697 035 $aUSA01000326697 035 $a(ALEPH)000326697USA01 035 $a000326697 100 $a20090609d1971----km-y0itay50------ba 101 $aeng 102 $aUS 105 $a||||||||001yy 200 1 $aPhysical kinetics$fE.M. Lifshitz and L. P. Pitaevskiì 210 $aOxford [etc.]$cPergamon press$dcopyr. 1971 215 $aXI, 452 p.$cill.$d25 cm 225 2 $aCourse of theoretical physics$v10 410 0$12001$aCourse of theoretical physics$v10 606 0 $aFisica 676 $a530.14 700 1$aLIFSHITZ,$bE.M.$0604738 701 1$aPITAEVSKII,$bP.$0604739 801 0$aIT$bsalbc$gISBD 912 $a990003266970203316 951 $a530 CTP (10)$b8196/CBS$c530$d00222796 959 $aBK 969 $aSCI 979 $aRSIAV7$b90$c20090609$lUSA01$h1339 996 $aPhysical kinetics$91119434 997 $aUNISA LEADER 03480nam 22006135 450 001 9910999781703321 005 20260128111946.0 010 $a981-9612-14-4 024 7 $a10.1007/978-981-96-1214-7 035 $a(MiAaPQ)EBC32013807 035 $a(Au-PeEL)EBL32013807 035 $a(CKB)38494816900041 035 $a(DE-He213)978-981-96-1214-7 035 $a(OCoLC)1516218293 035 $a(EXLCZ)9938494816900041 100 $a20250419d2025 u| 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aEnriques Surfaces I /$fby François Cossec, Igor Dolgachev, Christian Liedtke 205 $a2nd ed. 2025. 210 1$aSingapore :$cSpringer Nature Singapore :$cImprint: Springer,$d2025. 215 $a1 online resource (695 pages) 311 08$a981-9612-13-6 327 $a0 Preliminaries -- 1 Enriques surfaces: generalities -- 2 Linear Systems on Enriques Surfaces -- 3 Projective Models of Enriques Surfaces -- 4 Genus One Fibrations -- 5 Moduli Spaces -- Appendix A: Automorphic Forms and Moduli Spaces by S. Kondo. 330 $aThis book, consisting of two volumes, gives a contemporary account of the study of the class of projective algebraic surfaces known as Enriques surfaces. These surfaces were discovered more than 125 years by F. Enriques in an attempt to extend the characterization of rational algebraic curves to the case of algebraic surfaces. The novel feature of the present exposition is that no assumption on the characteristic of the ground field is assumed. This requirement calls for exploring the geometry of such surfaces by purely geometric and arithmetic methods that do not rely on transcendental methods such as the theory of periods of algebraic surfaces of type K3, which are close relatives of Enriques surfaces. Some of the methods use many technical tools from algebraic geometry that are discussed in Volume 1 and may be a useful source of references for the study of algebraic surfaces over fields of positive characteristic. Volume 1 also contains a detailed exposition of the theory of elliptic surfaces over fields of arbitrary characteristic. The first volume is an essential and greatly extended revision of Enriques Surfaces I, published in 1989 by Birkhäuser and co-authored by F. Cossec and I. Dolgachev. Included is a new chapter devoted to the theory of moduli of Enriques surfaces. The two volumes together contain many examples and an extensive bibliography made up of more than 700 items. 606 $aGeometry, Algebraic 606 $aAlgebra 606 $aFunctions of complex variables 606 $aAlgebraic Geometry 606 $aAlgebra 606 $aSeveral Complex Variables and Analytic Spaces 606 $aSuperfícies algebraiques$2thub 608 $aLlibres electrònics$2thub 615 0$aGeometry, Algebraic. 615 0$aAlgebra. 615 0$aFunctions of complex variables. 615 14$aAlgebraic Geometry. 615 24$aAlgebra. 615 24$aSeveral Complex Variables and Analytic Spaces. 615 7$aSuperfícies algebraiques 676 $a516.35 700 $aCossec$b François$054680 701 $aDolgachev$b Igor$0149516 701 $aLiedtke$b Christian$01817311 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910999781703321 996 $aEnriques Surfaces I$94374986 997 $aUNINA